화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.7, 913-917, July, 2012
Enhancement of transglutaminase production in Streptomyces mobaraensis DSM 40587 by non-nutritional stress conditions: Effects of heat shock, alcohols, and salt treatments
E-mail:
Stress-mediated bioprocess is a strategy designed to enhance biological target productivity. In this study, an attempt was made to enhance transglutaminase (TGase) production by Streptomyces mobaraensis by using different stress conditions including heat shock, alcohols and salt stress. Results showed that the effects of stress on TGase production depended on the type applied. For heat shock, TGase production (1.32 U/ml) was recorded maximum in the culture treated at 48 h post inoculation in water bath at 60 ℃ for 1 min. For alcohols treatment, the maximum activity of TGase (1.77 and 1.75 U/ml) was obtained when 3% methanol was added into the medium at 0 or 24 h of fermentation. However, a 3.5-fold increased production of TGase (3.8 U/ml) was observed in the medium supplemented with 0.2mol/l MgCl2 compared with the basic medium at the beginning of fermentation. In conclusion, TGase production from S. mobaraensis was improved by heat shock, methanol and salt stress treatments, MgCl2 stress was the most effective.
  1. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R,Tanaka H, Motoki M, Agric. Biol. Chem., 53, 2613 (1989)
  2. Beganovic J, Pavunc AL, Gjuracic K, Spoljarec M, Suskovic J, Kos B, J. Food Sci., 76, M124 (2011)
  3. Farnsworth JP, Li J, Hendricks GM, Guo MR, Small Ruminant Res., 65, 113 (2006)
  4. Jiang SJ, Zhao XH, Eur. Food Res. Technol., 231, 679 (2010)
  5. Wang HW, Kim IH, Park CS, Lee JH, Korean J. Chem. Eng., 25(4), 801 (2008)
  6. Suzuki S, Izawa Y, Kobayashi K, Eto Y, Yamanaka S, Kubota K, Yokozeki K, Biosci. Biotechnol. Biochem., 64, 2344 (2000)
  7. Iranzo M, Aguado C, Pallotti C, Canizares JA, Mormeneo S, Microbiol-Sgm., 148, 1329 (2002)
  8. Yan GL, Du GC, Li Y, Chen J, Zhong JJ, Process Biochem., 40, 963 (2005)
  9. Zhu Y, Rinzema A, Tramper J, Bol J, Biotechnol. Bioeng., 50(3), 291 (1996)
  10. Zheng MY, Du GC, Chen J, Lun SY, World J. Microb. Biot., 18, 767 (2002)
  11. de Souza CFV, Flores SH, Ayub MAZ, Process Biochem., 41, 1186 (2006)
  12. Tellez-Luis SJ, Ramirez JA, Vazquez M, Food Technol. Biotechnol., 42, 75 (2004)
  13. Umakoshi H, Yoshimoto M, Shimanouchi T, Kuboi R, Komasawa I, Biotechnol. Prog., 14(2), 218 (1998)
  14. Kang DH, Jeh EJ, Seo JW, Chun BH, Hur BK, Korean J. Chem. Eng., 24(4), 651 (2007)
  15. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP, EMBO Rep., 9, 670 (2008)
  16. Doull JL, Singh AK, Hoare M, Ayer SW, J. Ind. Microbiol., 13, 120 (1994)
  17. Nakata K, Yoshimoto A, Yamada Y, Biosci. Biotechnol. Biochem., 63, 293 (1999)
  18. Himabindu M, Potumarthi R, Jetty A, Process Biochem., 42, 1352 (2007)
  19. Folk JE, Cole PW, J. Biol. Chem., 241, 5518 (1966)
  20. Bradford MM, Anal. Biochem., 72, 248 (1976)
  21. Ngo KX, Umakoshi H, Shimanouchi T, Jung HS, Morita S, Kuboi R, J. Biosci. Bioeng., 100(5), 495 (2005)
  22. Fernandez MJ, Adrio JL, Piret JM, Wolfe S, Ro S, Demain AL, Appl. Microbiol. Biotechnol., 52(4), 484 (1999)
  23. Haq IU, Ali S, Qadeer MA, Lqbal J, Bioresour. Technol., 86(3), 227 (2003)
  24. Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li XM, Minas W, Orsaria L, Roeder D, Thompson CJ, Mol. Microbiol., 48, 1289 (2003)
  25. Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ, Mol. Microbiol., 47, 699 (2003)
  26. Vohradsky J, Li XM, Dale G, Folcher M, Nguyen L, Viollier PH, Thompson CJ, J. Bacteriol., 182, 4979 (2000)
  27. Wang C, Long X, Mao X, Dong H, Xu L, Li Y, Microbiol.Res., 165, 221 (2010)