화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.2, 196-201, March, 2012
전기방사를 이용한 Pullulan Electrospun Fiber Webs의 제조 및 특성
Preparation and Characterization of Electrospun Pullulan Webs
E-mail:
초록
전기방사는 휘발성 용매에 녹아있는 다양한 물질들을 마이크로 크기의 섬유로 제조하는데 사용되고 있다. 이번 연구에서는 물을 용매로 사용하여 pullulan을 전기 방사하였다. 부드러운 섬유를 얻기 위하여 pullulan 농도와 전압을 최적의 조건으로 설정하였다. Pullulan 농도는 pullulan 용액의 점도와 표면 장력에 큰 영향을 받는다. Bead 형태의 pullulan 전기방사 섬유는 5 wt%이하의 농도에서 얻어진다. Pullulan 용액의 농도가 10 wt%로 유지되고, 전압이 15 kV에 고정되었을 때, pullulan 섬유의 평균 직경은 200 nm로 감소하였다. Pullulan electrospun 섬유는 높은 용해도, 유연성, 부드러움과 강한 접착성을 보여준다.
Electrospinning is a versatile process used to prepare micro or nano sized fibers from various materials dissolved in volatile solvents. This study reports electrospun pullulan fibrous webs fabricated through electrospinning using water as a solvent. The electrospinning conditions such as pullulan (PUL) concentration and applied voltage were optimized in order to obtain smooth electrospun fibers. The concentration of PUL greatly influenced the viscosity and surface tension of PUL solution. PUL beaded electrospun fibers were obtained from PUL solutions with concentrations lower than 5 wt%, while homogenous electrospun fibers were prepared from solutions with high concentration and high viscosity. The average diameters of PUL fibers were decreased to 200 nm when the polymer concentration was kept at 10 wt% and the applied voltage was fixed at 15 kV during electrospinning. PUL electrospun fiber exhibited higher solubility, flexibility, softness and adhesive strength.
  1. Formhals A, U. S. Patent 1, 975, 504 (1934)
  2. Taylor GI, Proc. R. Soc. London A Meth. Phys. Sci., 313, 453 (1969)
  3. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
  4. Shin YM, Holman MM, Brenner MP, Rutledge GC, Appl. Phys. Lett., 78, 1149 (2001)
  5. Li D, Xia Y, Nano Lett., 3, 555 (2003)
  6. Curis A, Wilkinson C, Trends Biotech., 19, 197 (2001)
  7. Stijnman AC, Bodnar I, Hans Tromp R, Food Hydrocolloids., 25, 1393 (2011)
  8. Bender H, Lehman J, Wallenfels K, Biochim. Biophys. Acta., 36, 309 (1959)
  9. Wallenfels K, Keilich G, Bechtler G, Freudenberger D, Biochem. Z., 341, 433 (1965)
  10. Taguchi R, Kikuch Y, Sakno Y, Kobayachi T, J. Agric.Biol. Chem., 37, 1583 (1973)
  11. Chaouat M, Le Visage C, Autissier A, Chaubet F, Letourneur D, Biomaterials., 27, 5546 (2006)
  12. Shi L, Le Visage C, Chew SY, J. Biomater. Sci. Polym. Ed., 22, 1459 (2010)
  13. Kim I, Kang H, Jeong CN, Polym.(Korea), 27(3), 195 (2003)
  14. Shingle KI, Carbohydr. Res., 339, 447 (2004)
  15. Diab T, Biliaderis CG, Gerasopoulos D, Sfakiotakis E, J. Sci. Food Agric., 81, 988 (2001)
  16. Kristo E, Biliaderis CG, Zampraka A, Food Chemistry., 101, 753 (2007)
  17. Karim MR, Lee HW, Kim R, Ji BC, Cho JW, Son TW, Oh W, Yeum JH, Carbohydr. Polym., 78, 336 (2009)
  18. Lee HW, Karim MR, Ji HM, Choi JH, Do Ghim H, Park SM, Oh W, Yeum JH, J. Appl. Polym. Sci., 113(3), 1860 (2009)
  19. Milorad DC, Goran SN, Ljubomir AI, Bull. Chem.Technol. Macedonia., 21, 135 (2002)