화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.2, 198-203, April, 2012
반응성 염료(RB-8, RB-49, RR-218)의 결정화 및 입도분포 특성
Reactive Dye(RB-8, RB-49, RR-218) in Crystallization and Characteristic of Population Density
E-mail:
초록
염석결정화 방법으로 염료용액으로 부터 염료를 결정화하였다. 이번 연구에서 반응성 염료(RB-8, RB-49, RR-218)의 모액의 용해도와 결정화 속도를 연구하였다. 그 결과 연속식 결정화기에서 반응성 염료(RB-8, RB-49, RR-218)에 대한 결정화 속도식 RB-8에서 결정성장 속도 G=7.1×10^(-4)△C0.67와 핵생성 속도 B0=3.1×10^(15)△C[1.2×10^(-8)+△C0.7MT2]이고 RB-49는 결정성장 속도 G=5.2×10^(-4)C0.3441와 핵생성 속도 B0=7.2×10^(15)△C[3.3×10^(-8)+(△C)0.7MT2], RR-218의 결정성장 속도 G=4.4×10^(-4)C0.2361와 핵생성 속도 B0=6.3×10^(15)△C[7.9×10^(-8)+(△C)0.7MT2]의 실험식으로 표현할 수 있다. 또한 특성 곡선 법을 적용하여 입도분포를 계산한 결과 실험식과 일치하는 결과를 확인할 수 있었다.
Salting-out technique was adopted to crystallize dye crystals from dye solution. In this research solubility of dye solution and crystallization kinetics of Reactive dye (RB-8, RB-49, RR-218) was investigated. The empirical expressions of salting-out crystallization kinetics for Reactive dye (RB-8, RB-49, RR-218) in continuous MSMPR crystallizer was RB-8 in crystal growth kinetics G=7.1×10^(-4)△C0.67 and nucleation kinetics B0=3.1×10^(15)△C [1.2×10^(-8) +△C0.7MT2], RB-49 in crystal growth kinetics G=5.2×10^(-4)△C0.3441 and nucleation kinetics B0=7.2×10^(15)△C [3.3×10^(-8) +(△C)0.7MT2], RR-218 in crystal growth kinetics G=4.4×10^(-4)△C0.2361 and nucleation kinetics B0=6.3×10^(15)△C [7.9×10^(-8)+(△C)0.7MT2]. Also, comparison of calculated crystal size distribution applying to characteristic curve method with experimental crystal size showed good agreement.
  1. Randolph AD, Larson MA, Theory of Particulate Processes, 2nd ed., Academic Press, New York (1988)
  2. Nyvlt J, “Industrial Crystallization from Solution,” Butterworth & Co. Ltd., London (1971)
  3. Mullin JW, “Crystallization,” 3rd ed., Butterworth-Heinemann, London (1993)
  4. PamPlin BR, “Crystal Growth,” 2nd ed., Pergamon Press, London (1980)
  5. Tavare NS, “Industrial Crystallization Process Simulation Analysis and Design,” Plenum Press New York and London (1995)
  6. Mersmann A, Crystallization Technology Handbook,” Marcel Dekker x, Inc. New York-Basel-Hong Kong (1995)
  7. Chen MR, Larson MA, Chem. Eng.Science., 40(7), 1287 (1985)
  8. Juzaszek P, Larson MA, AIChE Journal., 23(4), 460 (1977)
  9. Han HK, Lee SI, Lee CS, Korean J. Chem. Eng., 28(1), 58 (1989)
  10. Kim HD, Park HS, Shin YJ, Lee CS, Korean J. Chem. Eng., 23(3), 145 (1985)
  11. Shin YJ, Yun CH, Lee CS, Int. Chem. Eng., 26(2), 348 (1986)
  12. Jones AG, Mullin JW, Chem. Eng. Sci., 29(1), 105 (1974)
  13. Mullin JW, Nyvlt J, Chem. Eng. Sci., 26(3), 369 (1971)
  14. Garside J, Gaska C, Mullin JW, J. Cryst. Growth., 13-14, 510 (1972)
  15. Nyvlt J, “The Kinetics of Industrial Crystallization,” Elsevier, Amsterdam-Oxford-NewYork-Tokyo (1985)
  16. Han HK, Jung HK, Korean J. Chem. Eng., 26(1), 246 (2009)
  17. Jung HK, Han HK, Kwun CS, Kang HJ, Theor. Appl. Chem. Eng., 14(1), 426 (2008)
  18. Jung HK, Han HK, Kwun CS, Kang HJ, Theor. Appl. Chem. Eng., 14(2), 2632 (2008)
  19. Pyun YR, Han HK, Jung HK, Kim BM, Theor. Appl. Chem. Eng., 13(2), 1620 (2007)
  20. Han HK, Jeong OH, Lim MH, Kim JA, Theor. Appl. Chem. Eng., 11(1), 329 (2005)
  21. Kim JA, Han HK, Kim BM, Pyun YR, Theor. Appl. Chem. Eng., 12(2), 1580 (2006)
  22. Kim BM, Han HK, Jung HK, Pyun YR, Theor. Appl. Chem. Eng., 13(2), 1376 (2007)
  23. Kwon CS, Jung HK, Kang HJ, Han HK, Theor. Appl. Chem. Eng., 14(1), 286 (2008)