화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.9, 1115-1118, September, 2012
A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon
E-mail:
Highly monodisperse carbon-supported palladium nanoparticles with controllable size (3 nm, 6.5 nm, 9.5 nm) were prepared using a simple colloidal method, and the size dependence of the catalytic performance for the direct synthesis of hydrogen peroxide from hydrogen and oxygen was studied. Smaller-sized supported palladium nanoparticles showed both higher conversion of hydrogen and selectivity for hydrogen peroxide, compared to larger-sized supported particles. Among the catalysts tested, 3-nm Pd nanoparticles supported on carbon showed the highest yield for hydrogen peroxide because of the small size and high crystallinity.
  1. Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew.Chem. Int. Ed., 45, 6962 (2006)
  2. Hage R, Lienke A, Angew. Chem. Int. Ed., 45, 206 (2006)
  3. Centi G, Perathoner S, Abate S, in Modern heterogeneous oxidation catalysis: design, rections and characterization, Mizuno N Eds., Wiley-Verlag GmbH & Co. KGaA (2009)
  4. Kosaka K, Yamada H, Shishida K, Echigo S, Minear RA, Tsuno H, Matsui S, Water Res., 35, 3587 (2001)
  5. Riedl HJ, Pfleiderer G, US Patent, 2,158,525 (1939)
  6. Edwards JK, Hutchings GJ, Angew. Chem. Int. Ed., 47, 9192 (2008)
  7. Park S, Kim TJ, Chung YM, Oh SH, Song IK, Korean J. Chem. Eng., 28(6), 1359 (2011)
  8. Edwards JK, Solsona B, Science., 323, 1037 (2009)
  9. Abate S, Melada S, Centi G, Perathoner S, Pinna F, Strukul G, Catal. Today, 117(1-3), 193 (2006)
  10. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ, J. Catal., 236(1), 69 (2005)
  11. Zhou Z, Wu Z, Zhang C, Zhou B, US Patent, 7,601,668 (2009)
  12. Zhou B, Lee LK, US Patent, 6,168,775 (2001)
  13. Somorjai GA, Frei H, Park JY, J. Am. Chem. Soc., 131(46), 16589 (2009)
  14. Van Santen RA, Acc. Chem. Res., 42, 57 (2008)
  15. Bond GC, Chem. Soc. Rev., 20, 441 (1991)
  16. Boudart M, Adv. Catal., 20, 153 (1969)
  17. Melada S, Pinna F, Strukul G, Perathoner S, Centi G, J. Catal., 235(1), 241 (2005)
  18. Park J, Joo J, Kwon S, Jang Y, Hyeon T, Angew. Chem. Int.Ed., 46, 4630 (2007)
  19. Kim KS, Demberelnyamba ND, Yeon SW, Choi S, Cha JH, Lee H, Korean J. Chem. Eng., 22(5), 717 (2005)
  20. Cha JH, Kim KS, Lee H, Korean J. Chem. Eng., 26(3), 760 (2009)
  21. Liu Q, Baur J, Schaak RE, Lunsford J, Angew. Chem. Int.Ed., 47, 6221 (2008)
  22. Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW, Nano Lett., 3, 1289 (2003)
  23. Yang Z, Klabunde KJ, J. Organomet. Chem., 694, 1016 (2009)
  24. Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391 (2009)
  25. Melada S, Rioda R, Menegazzo F, Pinna F, Strukul G, J. Catal., 239(2), 422 (2006)
  26. Abate S, Centi G, Melada S, Perathoner S, Pinna F, Strukul G, Catal. Today, 104(2-4), 323 (2005)