화학공학소재연구정보센터
Clean Technology, Vol.18, No.1, 43-50, March, 2012
태양광 실리콘 웨이퍼 세정제 개발
Development of Cleaning Agents for Solar Silicon Wafer
E-mail:
초록
태양전지 제조공정 중 잉곳의 절삭공정 후 진행되는 태양광 실리콘 웨이퍼 세정에 관한 연구를 수행하였다. 태양광 실리콘웨이퍼는 잉곳의 생산방법에 따라 단결정과 다결정 웨이퍼로 분류되고, 절삭 방법에 따라서는 슬러리로 절삭한 웨이퍼와 다이아몬드 와이어로 절삭한 웨이퍼로 구분할 수 있으며, 이의 방법들에 따라 웨이퍼 표면과 오염원이 달라질 수 있다. 본 연구에서는 세정대상물에 따라 오염원과 웨이퍼 표면의 특성을 관찰하였고 적합한 세정제를 개발하여 물성 및 세정성을 평가하여 적용성을 확인하고자 하였다. 개발된 세정제로 세정한 웨이퍼는 XPS 분석결과 잔류 오염물질이 관찰되지 않았으며, 표면조직화 후 균일한 패턴을 형성함을 확인할 수 있었다. 또한, 개발된 세정제를 웨이퍼 생산현장에서 테스트를 진행하여 기존 세정제보다 우수한 세정결과를 확보하였다.
Cleaning procedure of solar silicon wafer, following ingot sawing process in solar cell production is studied. Types of solar silicon wafer can be divided into monocrystalline or multicrystalline, and slurry sawn wafer or diamond sawn wafer according to the ingot growing methods and the sawing methods, respectively. Wafer surface and contaminants can vary with these methods. The characterisitics of contaminants and wafer surface are investigated for each cleaning substrate, and appropriate cleaning agents are developed. Physical properties and cleaning ability of the cleaning agents are evaluated in order to verify the application in the industry. The wafers cleaned with the cleaning agents do not show any residual contaminants when analyzed by XPS and regular patterns are formed after texturization. Furthermore, the cleaning agents are applied in the production industry, which shows superior cleaning results compared to the existing cleaning agents.
  1. Luque A, Hegedus S, Handbook of Photovoltaic Science and Engineering, 2nd Ed. Wiley (2010)
  2. Macdonald DH, Solar Energy., 76, 277 (2004)
  3. Gosalvez MA, Nieminen RM, New J. Phys., 5, 100.1 (2003)
  4. Tanaka H, Cheng D, Shikida M, Sato K, Sensors and Actuators A., 128, 125 (2006)
  5. Tanaka H, Sensors and Actuators., 82, 270 (2000)
  6. Munoz D, Thin Solid Films., 517, 3578 (2009)
  7. Gale GW, Busnaina AA, J. of Particulate Sci. Technol., 13, 197 (1995)
  8. Podolian A, Solar Energy Materials & Solar Cells., 95, 765 (2011)
  9. Keswani M, Raghavan S, Deymier P, Verhaverbeke S, Microelectronic Engineering., 86, 132 (2009)
  10. Kern W, Poutinen D, RCA Rev., 31, 187 (1970)
  11. Meuris M, Solid State Technol., 109 (1995)
  12. Schmidt HF, Jpn. J.Appl. Phys., 34, 727 (1995)
  13. Sparber W, Schultz O, Biro D, “Comparison of Texturing Methods for Monocrystalline Silicon Solar Cells Using KOH and Na2CO3,” Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (2003)
  14. Bidiville A, Wasmer K, Kraft R, “Diamond Wire-sawn Silicon Wafers-from the Lab to the Cell Production,” 24th European Photovolatic Solar Energy Conference and Exhibition (2009)
  15. Gogots Y, Baek C, Kirscht F, Semiconductor Sci. Technol., 14, 936 (1999)
  16. Amer MS, Dosser L, LeClair S, Maguire JF, Appl. Surf. Sci., 187(3-4), 291 (2002)
  17. Martin AR, Baeyens M, Hub W, Mertens PW, Kolbesen BO, Microelec. Eng., 45, 197 (1999)
  18. Tan B, Li W, Niu X, Wang S, Liu Y, Trans. Nonferrous Met. Soc. China., 16, 195 (2006)
  19. Gale G, Busnaina A, Dai F, Kashkoush I, Semicon.Intern., 19, 133 (1996)
  20. Shaw D, “Introduction to Colloid & Surface Chemistry,” 4th Ed. Butterworth Heinemann.
  21. Endo M, Yoshida H, Maeda Y, Appl. Phys. Lett., 75, 519 (1999)
  22. Extrand CW, Kumagai Y, J. Colloid Interface Sci., 191(2), 378 (1997)
  23. Zubel I, Kramkowska M, Sensors and Actuators A., 115, 549 (2004)
  24. Singh PK, Kumar R, Lal M, Singh SN, Das BK, Solar Energy Materials & Solar Cells., 70, 103 (2001)
  25. Xi Z, Yang D, Dan W, Jun C, Li X, Que D, Renewable Energy., 29, 2101 (2004)
  26. Kim K, Dhungel SK, Jung S, Mangalarah D, Yi J, Solar Energy Materials & Solar Cells., 92, 960 (2008)
  27. Gonzalez-Diaz B, Guerrero-Lemus R, Diaz-Herrera B, Marrero N, Materials Sci. and Engineering B., 159, 295 (2009)
  28. Mouche L, Tardif F, Derrien J, J. Electrochem. Soc., 141(6), 1684 (1994)
  29. Qin KD, Li YC, J. Colloid Interface Sci., 261(2), 569 (2003)