화학공학소재연구정보센터
Clean Technology, Vol.18, No.1, 95-101, March, 2012
수소생산을 위한 메탄 부분산화용 코발트와 니켈 촉매에서의 조촉매 첨가 효과
The Promotion Effects on Partial Oxidation of Methane for Hydrogen Production over Co/Al2O3 and Ni/Al2O3 Catalysts
E-mail:
초록
수소생산을 위한 메탄의 부분산화용 촉매로 알루미나에 담지된 코발트와 니켈 촉매를 함침법으로 제조하였다. 이들 코발트와 니켈 촉매에 조촉매 성분 Mg, Ce, La와 Sr을 첨가하여 초촉매 효과를 조사하였다. 메탄의 부분산화반응을 위한 촉매의 활성은 상압, CH4/O2 = 2.0에서 450~650 ℃의 온도영역으로 조사하였다. 촉매의 특성은 BET, XRD와 SEM/EDX를 이용하여 조사하였다. 0.2 wt%의 조촉매 성분의 첨가로 촉매성능의 상승효과를 얻을 수 있었다. 500 ℃ 이상의 온도에서는 Co/Al2O3에 Mg을 첨가한 촉매가 가장 우수한 메탄 전환율과 수소 선택성을 나타내었다. 낮은 온도 영역에서는 Ni/Al2O3에 Ce와 Sr을 첨가한 촉매가 Co계 촉매보다 우수한 반응특성을 나타내었다. Co/Al2O3와 Ni/Al2O3에 조촉매를 첨가한 경우 촉매의 표면적이 증가하는 것으로 나타났다.
The Co and Ni catalysts supported on Al2O3 for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. And the promotion effects of metals such as Mg, Ce, La and Sr in partial oxidation of methane over these Co/Al2O3 and Ni/Al2O3 were investigated. Reaction activity of these catalysts for the partial oxidation of methane was investigated in the temperature range of 450~650 ℃ at 1 atm and CH2/O2 = 2.0. The catalysts were characterized by BET, XRD and SEM/EDX. The results indicated that the catalytic performance of these catalysts was improved with the addition of 0.2 wt% metal promoter. The Mg promoted Co/Al2O3 catalyst showed the highest CH4 conversion and hydrogen selectivity at higher temperature than 500 ℃. The Ce and Sr promoted Ni catalysts superior to Co-based catalysts in the low temperature range. The addition of metal promoter to Co/Al2O3 and Ni/Al2O3 catalysts increased the surface area.
  1. Enger BC, Lodeng R, Holmen A, Appl. Catal. A: Gen., 346(1-2), 1 (2008)
  2. Demirci UB, Demirci I, Demirci UB, Demirci I, “Methane,” in Handbook of Sustainable Energy, Lee WH, Cho VG, Eds., Nova Science Publishers, Inc., New York, 323 (2011)
  3. Kim JK, Park JW, Bae JS, Kim JH, Lee JG, Kim Y, Han C, J. Korean Ind. Eng. Chem., 19(5), 466 (2008)
  4. Kim SB, Kim YK, Lim YS, Kim MS, Hahm HS, Korean J. Chem. Eng., 41(1), 1023 (2003)
  5. Lin SY, Production of Hydrogen from Hydrocarbons, in Hydrogen Fuel: Production, Transport, and Storage, Ram B. Gupta, Ed., CRC Press, Boca Raton, 33 (2009)
  6. Satterfield CN, Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York, 419 (1991)
  7. Pena MA, Gomez JP, Fierro JL, Appl. Catal. A: Gen., 144(1-2), 7 (1996)
  8. Bradford MC, Vannice MA, Appl. Catal. A: Gen., 142(1), 73 (1996)
  9. Wang SB, Lu GQ, Millar GJ, Energy Fuels, 10(4), 896 (1996)
  10. Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson JA, Guerrero-Ruiz A, Appl. Catal. A: Gen., 202(2), 183 (2000)
  11. Luo JZ, Yu ZL, Ng CF, Au CT, J. Catal., 194(2), 198 (2000)
  12. Onstot WJ, Minet RG, Tsotsis TT, Ind. Eng. Chem. Res., 40(1), 242 (2001)
  13. Zhang K, Kogelschatz U, Eliasson B, Energy Fuels, 15(2), 395 (2001)
  14. Gao XX, Huang CJ, Zhang NW, Li JH, Weng WZ, Wan HL, Catal. Today, 131(1-4), 211 (2008)
  15. Craciun R, Shereck B, Gorte RJ, Catal. Lett., 51(3-4), 149 (1998)
  16. Lee SS, Hong JH, Ha HJ, Kim BK, Han JD, Korean Chem. Eng. Res., 48(6), 776 (2010)
  17. Zeng S, Wang L, Gong M, Chen Y, J. Natural Gas. Chem., 19(5), 509 (2010)
  18. Yu C, Weng W, Shu Q, Meng X, Zhang B, Chen X, Zhou X, J. Natural Gas. Chem., 20(2), 135 (2011)
  19. Di M, Dajiang M, Xuan L, Maochu G, Yaoqiang C, J. Rare. Earths., 24(4), 451 (2006)
  20. Seo JG, Youn MH, Song IK, Clean Technol., 15(1), 47 (2009)
  21. Lucredio AF, Jerkiewicz G, Assaf EM, Appl. Catal. B: Environ., 84(1-2), 106 (2008)
  22. Yaquan W, Xuebin H, Bingbing L, Wenju W, Dalin W, J. Natural Gas. Chem., 17(4), 344 (2008)