화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.2, 204-209, April, 2012
루테늄 촉매를 이용한 에탄의 수증기 개질 반응 Kinetics와 반응기 Sizing
Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing
E-mail:
초록
상업용 루테늄 촉매 상에서 에탄의 수증기 개질 반응에 대한 kinetics 데이터를 얻기 위하여 반응온도, 에탄의 분압, 수증기/에탄의 비 등을 변화시키면서 반응 실험을 수행하였다. Kinetics 데이터를 사용하여 Power rate law kinetic model과 Langmuir-Hinshelwood model의 parameter를 구하였다. 또한 kinetic model식을 적용하여 PRO/II를 이용한 공정 모사를 통해서 에탄의 수증기 개질 반응기 sizing을 수행하였다. 동일한 전환율을 얻기 위해서는 Power rate law model을 적용하였을 경우가 Langmuir-Hinshelwood model을 적용하였을 경우보다 개질 반응기의 부피가 더 큼을 알 수 있었다. Langmuir-Hinshelwood model에 의해 계산된 반응 속도가 반응 실험 결과에 의해 구해진 반응 속도와 더 잘 일치했기 때문에 Langmuir-Hinshelwood model을 적용하여 계산된 반응기의 크기가 실제 반응기 설계에 더 적절하다고 판단된다.
In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.
  1. Park CH, Kim KS, Jun JW, Cho SY, Lee YK, J. Korean Ind. Eng. Chem., 20(2), 186 (2009)
  2. Vizcaino AJ, Carrero A, Calles JA, Int. J. Hydrogen.Energy., 32, 1450 (2007)
  3. Christensen TS, Appl. Catal. A: Gen., 138(2), 285 (1996)
  4. Graf PO, Mojet BL, van Ommen JG, Lefferts L, Appl. Catal. A: Gen., 332(2), 310 (2007)
  5. Jeong JH, Lee JW, Seo DJ, Seo Y, Yoon WL, Lee DK, Kim DH, Appl. Catal. A: Gen., 302(2), 151 (2006)
  6. Profeti LPR, Ticianelli EA, Assaf EM, Fuel., 87, 2076 (2008)
  7. Hardiman KM, Ying TT, Adesina AA, Kennedy EM, Dlugogorski BZ, Chem. Eng. J., 102(2), 119 (2004)
  8. Seo JG, Youn MH, Jung JC, Song IK, Int. J.Hydrogen Energy., 34, 5409 (2009)
  9. Sperle T, Chen D, Lodeng R, Holmen A, Appl. Catal. A: Gen., 282(1-2), 195 (2005)
  10. Schadel BT, Duisberg M, Deutschmann O, Catalysis Today., 142, 42 (2009)
  11. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311 (2001)
  12. Maluf SS, Assaf EM, Fuel., 88, 1547 (2009)
  13. Leventa M, Gunn DJ, El-Bousi MA, Int. J. Hydrogen Energy., 28, 945 (2003)
  14. Choudhary VR, Mondal KC, Appl. Energy, 83(9), 1024 (2006)
  15. Aboosadi ZA, Rahimpour MR, Jahanmiri A, Int. J.Hydrogen energy., 36, 2960 (2011)
  16. Zeppieri M, Villa PL, Verdone N, Scarsella M, De Filippis P, Appl. Catal. A: Gen., 387(1-2), 147 (2010)
  17. Lee WH, Master Dissertation, Kongju National University, Gongju, Korea (2011)
  18. Zhan Y, Li D, Nishida K, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 356(2), 231 (2009)
  19. Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T,Takehira K, Appl. Clay Sci., 43, 49 (2009)
  20. Chon H, Seo G, Introduction of Catalysis, 4th edition, 205, Hanrimwon, Korea (2002)