Fluid Phase Equilibria, Vol.307, No.2, 166-174, 2011
Solubility of carbon dioxide in aqueous solution of 2-amino-2-methyl-1-propanol and piperazine
In this work, new experimental results of the vapour-liquid equilibrium (VLE) of CO2 in aqueous 2-amino-2-methyl-1-propanol (AMP) and piperazine (PZ) have been presented in the temperature range of 298-328 K and PZ concentration range of 2-8 mass%, keeping the total amine concentration in the solution at 30 mass%. The partial pressures of CO2 were in the range of 0.1-1450 kPa. A thermodynamic model was developed to correlate and predict the VLE of CO2 in aqueous AMP + PZ. The electrolyte non-random two liquid (ENRTL) theory has been used to develop the VLE model for the quaternary system (CO2 + AMP + PZ + H2O) to describe the equilibrium behaviour of the solution. The experimental data from this work and data available in the literature were used to regress the ENRTL interaction parameters. The model predictions are in good agreement with the experimental data of CO2 solubility in aqueous blends of this work as well as those reported in the literature. The current model can also predict speciation, heat of absorption, pH of the CO2 loaded solution, and amine volatility. (C) 2011 Elsevier B.V. All rights reserved.
Keywords:Piperazine;2-Amino-2-methyl-1-propanol;Carbon dioxide;Vapour-liquid equilibria;Electrolyte NRTL