IEEE Transactions on Automatic Control, Vol.56, No.11, 2599-2607, 2011
Combination of Lyapunov and Density Functions for Stability of Rotational Motion
Lyapunov methods and density functions provide dual characterizations of the solutions of a nonlinear dynamic system. This work exploits the idea of combining both techniques, to yield stability results that are valid for almost all the solutions of the system. Based on the combination of Lyapunov and density functions, analysis methods are proposed for the derivation of almost input-to-state stability, and of almost global stability in nonlinear systems. The techniques are illustrated for an inertial attitude observer, where angular velocity readings are corrupted by non-idealities.