Inorganic Chemistry, Vol.49, No.4, 1834-1848, 2010
Heterobimetallic Metal-Complex Assemblies Constructed from the Flexible Arm-Like Ligand 1,1'-Bis[(3-pyridylamino)carbonyl]ferrocene: Structural Versatility in the Solid State
The bidentate ferrocenyl sandwich molecule 1,1'-bis[(3-pyridylamino)carbonyl]ferrocene (3-BPFA) has been employed as an organometallic ligand in reactions with a series of transition metal salts to construct heterobimetallic architectures. X-ray crystallographic characterization reveals that the crystal packing of free ligand 3-BPFA induces spontaneous resolution of helical chains via intermolecular hydrogen bonds. By combining the flexibility from the armlike molecule (3-BPFA) with the variation of the coordination property from different metal ions and/or the different counteranions, five different types of architectures are prepared: one octahedral coordination cage (copper(II) complex 1); two discrete pseudocapsules for combination of chlorine anions (nickel(II) complex 2 and cobalt(II) complex 3); two dimers with metal-metal interactions (silver(l) complexes 4 and 5); one macrocyclic complex (mercury(II) complex 6); and five two-dimensional mixed-metal-organic frameworks (M'-MOFs) (zinc(II), cadmium(II), and mercury(II) complexes 7-11). The structures of all complexes are characterized in detail by IR, elementary analysis, and single-crystal X-ray diffraction analysis. The factors inducing the structure variation among the complexes are discussed by taking account of the coordination geometry of different metal ions, the span angle between the two "arms", and the coordination mode of the 3-BPFA ligand.