화학공학소재연구정보센터
Inorganic Chemistry, Vol.49, No.16, 7536-7544, 2010
Structural Characterization of Zinc and Iron (II/III) Complexes of a Porphyrin Bearing Two Built-in Nitrogen Bases. An Example of High-Spin Diaqua-Iron(III) Bromo Complex
A bis-strapped porphyrin with two intramolecular nitrogen bases was synthesized, and its zinc(II), iron(II), and iron(III) complexes have been structurally characterized. Whereas the zinc(II) complex is square pyramidal five-coordinate and the iron(II) complex is six-coordinate despite a significant distortion of the macrocycle induced by the rigidity of the straps, the iron(III) complex exhibits a peculiar bis-aqua structure in which no intramolecular axial base is bound to the iron atom in the porphyrin. Furthermore, on one side, the bromide counteranion of the iron is bound inside the cycle formed by a strap and establishes a hydrogen bond with an axially bound water molecule. On the other side, a residual HBr molecule protonates one pyridine base leading to the formation of an intermolecular pyridinium pyridine hydrogen bond. The large ionic radius of the high-spin iron(III) cation is accommodated in the macrocycle with no displacement of the metal out of the mean porphyrinic plane, with an average Fe-Np bond distance of 2.057 angstrom, and the axial Fe-Ow(aqua) bond distance measured at 2.090 angstrom. As a result, this high-spin iron(III) bis-aqua complex is only lightly distorted.