Inorganic Chemistry, Vol.51, No.1, 620-628, 2012
Synthesis, Structure, Chemical Bonding, and Magnetism of the Series RELiGe2 (RE = La-Nd, Sm, Eu)
This article focuses on the synthesis and the crystal chemistry of six members of a series of rare-earth metal based germanides with general formula RELiGe2 (RE = La-Nd, Sm, and Eu). The structures of these compounds have been established by single-crystal X-ray diffraction (CaLiSi2 structure type, space group Pnma, Z = 4, Pearson symbol oP16). The chemical bonding within this atomic arrangement can be rationalized in terms of anionic germanium zigzag chains, conjoined via chains of edge-shared LiGe4 tetrahedra and separated by rare-earth metal cations. The structure can also be viewed as an intergrowth of AlB2-like and TiNiSi-like fragments, or as the result of the replacement of 50% of the rare-earth metal atoms by lithium in the parent structure of the REGe monogermanides. Except for LaLiGe2 and SmLiGe2, the remaining four RELiGe2 phases exhibit Curie-Weiss paramagnetism above about SO K In the low temperature regime, the localized 4f electrons in CeLiGe2, PrLiGe2, and SmLiGe2 order ferromagnetically, while antiferromagnetic ordering is observed for NdLiGe2 and EuLiGe2. The calculated effective magnetic moments confirm RE3+ ground states in all cases excluding EuLiGe2, in which the magnetic response is consistent with Eu2+ configuration (J = S = 7/2). The experimental results have been complemented by tight-binding linear muffin-tin orbital (TB-LMTO) band structure calculations.