International Journal of Control, Vol.85, No.4, 373-383, 2012
Robust stability and control for uncertain neutral time delay systems
In this article, the problem of robust stability and stabilisation for a class of uncertain neutral systems with discrete and distributed time delays is considered. By utilising a new Lyapunov functional based on the idea of delay partitioning approach, we employ the linear matrix inequality technique to derive delay-dependent criteria which ensures the robust stability of uncertain neutral systems. The obtained stability conditions are formulated in terms of linear matrix inequalities that can easily be solved by using standard software packages. Further, the result is extended to study the robust stabilisation for uncertain neutral systems with parameter uncertainties. A state feedback controller is proposed to guarantee the robust asymptotic stabilisation for uncertain systems and the controller is constructed in terms of the solution to a set of matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and conservatism of the obtained results. It is shown that the results developed in this article can tolerate larger allowable delay than some existing works in the literature. Further, it is proved that the proposed criterion is also computationally less conservative when compared to some existing results.
Keywords:robust control;stabilisation;neutral systems;delay partitioning approach;linear matrix inequality