International Journal of Energy Research, Vol.35, No.5, 376-388, 2011
Effects of inlet humidification on PEM fuel cell dynamic behaviors
The dynamic behaviors of a proton exchange membrane (PEM) fuel cell have been studied both experimentally and numerically. The objective of this paper is to investigate the effects of cathode inlet humidification on PEM fuel cell load change operations and the fuel cell performance during a simulated start-up process. The PEM fuel cell was found to respond quickly and reproducibly to load changes. It was also found that an increase in the cathode inlet humidification significantly influences the start-up performance of a PEM fuel cell. The cathode inlet relative humidity (RH) under 30% significantly dropped the cell dynamic performance. Extensive numerical simulations, with the transient processes of load jump and gradual changes considered, were performed to characterize dynamic responses of a singe-channel PEM fuel cell under different inlet humidification levels. The results showed that the response time for a fuel cell to reach steady state depends on water accumulation in the membrane, which is consistent with the experimental results. Copyright (C) 2010 John Wiley & Sons, Ltd.