화학공학소재연구정보센터
International Journal of Energy Research, Vol.35, No.8, 690-696, 2011
Development of methanol-fueled low-temperature solid oxide fuel cells
Low-temperature solid oxide fuel cell (SOFC, 300-600 degrees C) technology fueled by methanol possessing significant importance and application in polygenerations has been developed. Thermodynamic analysis of methanol gas-phase compositions and carbon formation indicates that direct operation on methanol between 450 and 600 degrees C may result in significant carbon deposition. A water steam/methanol ratio of 1/1 can completely suppress carbon formation in the same time enrich H-2 production composition. Fuel cells were fabricated using ceria-carbonate composite electrolytes and examined at 450-600 degrees C. The maximum power density of 603 and 431 mW cm(-2) was achieved at 600 and 500 degrees C, respectively, using water steam/methanol with the ratio of 1/1 and ambient air as fuel and oxidant. These results provide great potential for development of the direct methanol low-temperature SOFC for polygenerations. Copyright (C) 2010 John Wiley & Sons, Ltd.