화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.3, 1088-1095, May, 2012
Application of water vapor-permselective alumina.silica composite membrane in methanol synthesis process to enhance CO2 hydrogenation and catalyst life time
E-mail:
In this work a water vapor-permselective alumina-silica composite membrane reactor is proposed to overcome the thermodynamic equilibrium limitations and increasing catalyst activity. A steady state heterogeneous model is developed to simulate the proposed configuration. To verify accuracy of the considered model, simulation results of a methanol reactor is compared with the industrial plant data. The membrane reactor benefits are: higher carbon dioxide conversion, higher quality of outlet product, higher catalyst activity. Genetic algorithm is employed to optimize the process performance considering methanol production as the objective function. This configuration has enhanced the methanol yield about 7% compared with conventional reactor.
  1. Lurgi, Integrated low pressure methanol process, Technical Report, Frankfurt am Main, Germany (1995)
  2. Makihara H, Niwa K, Nagai H, Morita K, Horiza H, Kobayashi K, Kuwada C, Energy Prog., 7, 51 (1987)
  3. Loyne U, LohmWer R, Chem. Eng. Technol., 58, 212 (1986)
  4. Lange JP, Catal. Today, 64(1-2), 3 (2001)
  5. Lovik I, Hellestad M, Herzberg T, PhD Thesis, Norwegian University of Science and Technology, Department of Chemical Engineering (2001)
  6. Jahanmiri A, Eslamloueyan R, Chem. Eng. Commun., 189(6), 713 (2002)
  7. Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 45, 773 (1990)
  8. Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249 (2005)
  9. Shahrokhi M, Baghmisheh GR, Comput. Chem. Eng., 60(15), 4275 (2005)
  10. Rahimpour MR, Ghader S, Chem. Eng. Technol., 26(8), 902 (2003)
  11. Iliuta I, Larachi F, Fongarland P, Ind. Eng. Chem. Res., 49(15), 6870 (2010)
  12. Farsi M, Jahanmiri A, Chem. Eng. Res. Design., 9, 2728 (2011)
  13. Skrzypek J, Lachowska M, Grzesik M, Sloczynski J, Nowak P, Chem. Eng. J., 58, 101 (1995)
  14. Lee KH, Youn MY, Sea B, Desalination, 191(1-3), 296 (2006)
  15. Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GE, Chem. Eng. Sci., 41, 2883 (1986)
  16. Graaf GH, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 43, 3185 (1988)
  17. Tallmadge JA, J. AIChE., 16, 1092 (1970)
  18. Lindsay AL, Bromley LA, Ind. Eng. Chem., 42, 1508 (1950)
  19. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases and Liquids, McGraw-Hill, New York (2001)
  20. Cussler EL, Diffusion, Mass Transfer in Fluid Systems, University Press, Cambridge (1984)
  21. Hirschfelder JO, Curtis CF, Bird RB, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1952)
  22. Wilke CR, Chem. Eng. Prog., 46, 95 (1950)
  23. Dittus FW, Boelter LMK, Publications in Engineering, University of California (1930)
  24. Dwivedi PN, Upadhyay SN, Ind. Eng. Chem. Process., 16, 157 (1977)
  25. Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Boston (1989)
  26. Dormand JR, Prince PJ, J. Comput. Appl. Math., 6, 19 (1980)
  27. Harting F, Keil FJ, J. Ind. Eng. Chem. Res., 32, 424 (1993)
  28. Sahibzada M, Chadwick D, Metcalfe IS, 4th International Natural Gas Conversion Symposium, 29 (1997)
  29. Kung HH, Catal. Today., 11, 443 (1992)