화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.3, 1149-1152, May, 2012
Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235)
E-mail:
Iron terephthalate, MOF-235, metal-organic framework synthesized hydrothermally and was used for gas adsorption. Resulting sample was characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) and FT-IR analysis. Adsorption properties of CH4, H2 and CO2 on MOF-235 were investigated by volumetric measurements. The absolute adsorption capacity was found in the order of CH4 ≫ H2 > CO2. The high CH4 adsorption capacity of MOF-235 was attributed to the high pore volume and large number of open metal sites. The high selectivity for CH4 over CO2 (14.7) and H2 (8.3), suggests that MOF-235 is a potential adsorbent for the separation of CH4 from gas mixtures.
  1. Wu H, Simmons JM, Liu Y, Brown CM, Wang X, Ma S, Peterson VK, Southon PD, Kepert CJ, Zhou H, Yildirim T, Zhou W, Chem. Eur. J., 16, 5205 (2010)
  2. Lozano-Castello’ D, Alcaniz-Monge J, de la Casa-Lillo MA, Cazorla-Amoro’s D, Linares-Solano A, Fuel., 81, 1777 (2002)
  3. Cracknell RF, Gordon P, Gubbins KE, J. Phys. Chem., 97, 494 (1993)
  4. Lim KL, Kazemian H, Yaakob Z, Daud WRW, Chem. Eng. Technol., 33(2), 213 (2010)
  5. Lee JY, Wood CD, Bradshaw D, Rosseinsky MJ, Cooper AI, Chem. Commun., 2670 (2006)
  6. Hedin N, Chen L, Laaksonen A, Nanoscale., 2, 1819 (2010)
  7. Finsy V, Ma L, Alaerts L, De Vos DE, Baron GV, Denayer JFM, Micropor.Mesopor. Mater., 120, 221 (2009)
  8. Anbia M, Lashgari M, Chem. Eng. J., 150(2-3), 555 (2009)
  9. Anbia M, Moradi SE, Appl. Surf. Sci., 255(9), 5041 (2009)
  10. Anbia M, Moradi SE, Chem. Eng. J., 148(2-3), 452 (2009)
  11. Anbia M, Mohammadi N, Mohammadi K, J. Hazard. Mater., 176(1-3), 965 (2010)
  12. Leaf D, Verolmec HJH, Hunt WF, J. Environ. Int., 29, 303 (2003)
  13. Tucker M, Ecol. Econ., 15, 215 (1995)
  14. IPCC 2007, in: Pachauri RK, Reisinger A (Eds.), Climate Change (2007): Synthesis Report, IPCC, Geneva, Switzerland (2008)
  15. Wood CD, Tan B, Trewin A, Niu HJ, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stockel E, Cooper AI, Chem. Mater., 19, 2034 (2007)
  16. Ghanem BS, Msayib KJ, McKeown NB, Harris KDM, Pan Z, Budd PM, Butler A, Selbie J, Book D, Walton A, Chem. Commun., 67 (2007)
  17. McKeown NB, Ghanem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A, Angew. Chem. Int. Ed., 45, 1804 (2006)
  18. McKeown NB, Budd PM, Book D, Macromol. Rapid Commun., 28(9), 995 (2007)
  19. Germain J, Hradil J, Fre’chet JMJ, Svec F, Chem. Mater., 18, 4430 (2006)
  20. Hirscher M, Panella B, Scr. Mater., 56, 809 (2007)
  21. Sudik AC, Cote AP, Yaghi OM, Inorg. Chem., 44(9), 2998 (2005)
  22. Kondo M, Yoshito mi T, Seki K, Matsuzaka H, Kitagava S, Angew. Chem. Int. Ed., 36, 1725 (1997)
  23. Eddaoudi M, Kim J, Rosi N, Vodka D, Wacher J, O’Keeffe M, Yaghi OM, Science., 295, 469 (2002)
  24. Zhou W, Wu H, Hartman MR, Yildirim TJ, Phys. Chem., 111, 16131 (2007)
  25. Senkovska I, Kaskel S, Micropor. Mesopor. Mater., 112, 108 (2008)
  26. Bourrelly S, Llewellyn PL, Serre C, Millange F, Loiseau T, Ferey G, J. Am. Chem. Soc., 127(39), 13519 (2005)
  27. Millange F, Serre C, Fe´ rey G, Chem. Commun., 822 (2002)
  28. Chowdhury P, Bikkina C, Gumma S, J. Phys. Chem. C., 113, 6616 (2009)
  29. Bao ZB, Yu LA, Ren QL, Lu XY, Deng SG, J. Colloid Interface Sci., 353(2), 549 (2011)
  30. Haque E, Jun JW, Jhung SH, J. Hazard. Mater., 185, 507 (2011)
  31. Zhou W, Chem. Rec., 10, 200 (2010)
  32. Lee JS, Jhung SH, Yoon JW, Hwang YK, Chang JS, J. Ind. Eng. Chem., 15(5), 674 (2009)
  33. Pawar RR, Patel HA, Sethia G, Bajaj HC, Appl. Clay. Sci., 46, 109 (2009)
  34. Bao ZB, Alnemrat S, Yu LA, Vasiliev I, Ren QL, Lu XY, Deng SG, J. Colloid Interface Sci., 357(2), 504 (2011)
  35. Rallapalli P, Prasanth KP, Patil D, Somani RS, Jasra RV, Bajaj HC, J. Porous Mater., 18, 205 (2011)