화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.3, 302-308, May, 2012
폴리프로필렌 표면 위에 폴리비닐피롤리돈의 플라즈마 유도 그래프트 공중합
Plasma-Induced Grafting of Poly(N-vinyl-2-pyrrolidone) onto Polypropylene Surface
E-mail:
초록
본 연구의 목적은 대기압 플라즈마 처리된 평판형 폴리프로필렌(polypropylene, PP) 필름 표면 위에 폴리비닐피롤리돈(poly(N-vinyl-2-pyrrolidone), PVP)을 그래프트 공중합시키기 위한 최적 조건을 찾는데 있다. 대기압 플라즈마 처리 조건은 RF power 200W, Ar 유속 6 LPM, 처리시간 30초, 처리 후 노출시간은 5분으로 고정하였다. 그래프트 공중합에서는 중합 시간, 중합 온도, 비닐피롤리돈(N-vinyl-2-pyrrolidone, NVP) 농도의 조건을 각각 달리하여 표면 그래프트도의 변화를 조사하였다. 그 결과, 중합 시간 6시간, 중합 온도 90 ℃, NVP 농도 40%에서 가장 높은 그래프트도를 나타내었다. ATR-FTIR, X-ray photoelectron spectroscopy(XPS), SEM 분석을 통해서도 PVP의 도입을 확인할 수 있었다.
The objective of this study is to investigate optimum reaction conditions for the grafting of poly(Nvinyl-2-pyrrolidone) (PVP) onto the surface of plasma-treated polypropylene film. The plasma treatment conditions were fixed as 200 W rf power, 6 LPM Ar flow rate, 30 sec treatment time, and 5 min exposure time after treatment. For graft copolymerization, we investigated the change of grafting degree with respect to reaction time, reaction temperature and N-vinyl-2-pyrrolidone concentration. Maximum grafting degree was obtained at the conditions of 6 h reaction time, 90 ℃ reaction temperature, and 40% N-vinyl-2-pyrrolidone concentration. The introduction of PVP was confirmed by ATR-FTIR, XPS, and SEM analysis.
  1. Garrec DL, Gori S, Luo L, Lessard D, Smith DC, Yessine M, Ranger M, Leroux J, J. Control. Release., 99, 83 (2004)
  2. Iwata M, Ueda H, Drug Dev. Ind. Pharm., 22, 1161 (1996)
  3. Chowdary KP, Pamesh KV, Indian Drugs., 32, 477 (1995)
  4. Da Silvera BI, Eur. Polym. J., 29, 1095 (1993)
  5. Al Sagheer FA, El-Sawy NM, J. Appl. Polym. Sci., 76(3), 282 (2000)
  6. Rao GSS, Jain RC, J. Appl. Polym. Sci., 88(9), 2173 (2003)
  7. Liu ZM, Xu ZK, Wan LS, Wu J, Ulbricht M, J. Membr. Sci., 249(1-2), 21 (2005)
  8. Pieracci J, Crivello JV, Belfort G, J. Membr. Sci., 156(2), 223 (1999)
  9. Pieracci J, Crivello JV, Belfort G, Chem. Mater., 12, 2123 (2000)
  10. Pieracci J, Crivello JV, Belfort G, J. Membr. Sci., 202(1-2), 1 (2002)
  11. Zeniewicz M, J. Adhes. Sci. Technol., 15, 1769 (2001)
  12. Xu G, Lin S, Macromol. Sci. Rev. Macromol. Chem. Phys., 34, 555 (1994)
  13. Chen CM, React. Funct. Polym., 68, 1307 (2008)
  14. Tyagi C, Tomar LK, Singh H, J. Appl. Polym. Sci., 111(3), 1381 (2009)
  15. Boenig HV, Plasma Science and Technology, Cornell University Press, New York (1982)
  16. Kaplan SL, Rose PW, Proceedings of the 46th Annum Conference of the Society of Plastics Engineers, Atlanta, USA, 1542 (1988)
  17. Ladizesky NH, Ward IM, J. Mater. Sci. Mater. Med., 6, 497 (1995)
  18. Gomathi N, Neogi S, Appl. Surf. Sci., 255(17), 7590 (2009)
  19. Jung JS, Myung SW, Choi HS, Korean J. Chem. Eng., 25(5), 1190 (2008)
  20. Titov VA, Shikova TG, Rybkin VV, Smirnov DS, Ageeva TA, Choi HS, High Temp. Mat. Pr., 10, 467 (2006)
  21. Choi HS, Rybkin VV, Titov VA, Shikova TG, Ageeva TA, Surf. Coat. Tech., 200, 4479 (2006)
  22. Kwon OJ, Tang S, Myung SW, Lu N, Choi HS, Surf. Coat. Tech., 192, 1 (2005)
  23. Chen KS, Ku YA, Lin HR, Yan TR, Sheu DC, Chen TM, J. Appl. Polym. Sci., 100(1), 803 (2006)
  24. Zeniewicz M, J. Adhes. Sci. Technol., 15, 1769 (2001)
  25. Bhat NV, Upadhyay DJ, Deshmukh RR, Gupta SK, J. Phys. Chem. B, 107(19), 4550 (2003)
  26. Kwon OJ, Tang S, Myung SW, Lu N, Choi HS, Surf. Coat. Tech., 192, 1 (2005)
  27. Nguyen V, Yoshida W, Jou JD, Cohen Y, J. Polym. Sci. A: Polym. Chem., 40(1), 26 (2002)
  28. Jung JS, Yang IY, Myung SW, Choi HS, Kim JH, Polym.(Korea), 31(4), 308 (2007)
  29. Poncin-Epaillard F, Brosse JC, Falher T, Macromol.Chem. Phys., 199, 1613 (1998)
  30. Sionkowska A, Wisniewski M, Kaczmarek H, Skopinska J, Chevallier P, Mantovani D, Lazare S, Tokarev V, Appl. Surf. Sci., 253(4), 1970 (2006)