Korean Journal of Chemical Engineering, Vol.29, No.11, 1500-1507, November, 2012
Energy efficiency improvement of dimethyl ether purification process by utilizing dividing wall columns
E-mail:
The alternative fuel, dimethyl ether (DME), which can be synthesized from natural gas, coal or biomass syngas, has been traditionally used as a diesel substitute or additive. DME purification processes with a conventional distillation sequence consume a large amount of energy. We used dividing wall columns (DWCs) to improve the energy efficiency and reduce the capital cost of the DME purification process. Various possible DWC arrangements were explored to find the potential benefits derived from thermally coupled distillations. The results show that utilizing DWCs can significantly reduce both the energy consumption and investment cost of the DME purification process. The lower energy consumption also results in the reduction of the CO2 emission.
Keywords:Distillation;Dimethyl Ether;DME;Dividing Wall Column;DWC;Thermally Coupled Distillation Column
- Ng HD, Chao J, Yatsufusa T, Lee JHS, Fuel., 88, 124 (2008)
- Hu JL, Wang Y, Cao CS, Elliott DC, Stevens DJ, White JF, Ind. Eng. Chem. Res., 44(6), 1722 (2005)
- Larson ED, Yang H, Energy Sustain Dev., 8, 115 (2004)
- Fleisch TH, Diesel Prog. Engines Drives., 61, 42 (1995)
- Galvita VV, Semin GL, Belyaev VD, Yurieva TM, Sobyanin VA, Appl. Catal. A: Gen., 216(1-2), 85 (2001)
- Semelsberger TA, Borup RL, Greene HL, J. Power Sources., 156, 497 (2005)
- Vakili R, Pourazadi E, Setoodeh P, Eslamloueyan R, Rahimpour MR, Appl. Energy, 88(4), 1211 (2011)
- Stiefel M, Ahmad R, Arnold U, Doring M, Fuel Process. Technol., 92(8), 1466 (2011)
- Hadipour A, Sohrabi M, Chem. Eng. J., 137(2), 294 (2008)
- Gadalla MA, Olujic Z, Jansens PJ, Jobson M, Smith R, Environ. Sci. Technol., 39, 6860 (2005)
- Gutierrez-Guerra R, Segovia-Hernandez JG, Hernandez S, Chem. Eng. Res. Des., 87(2A), 145 (2009)
- Agrawal R, Fidkowski ZT, AIChE J., 44(11), 2565 (1998)
- Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559 (2010)
- Emtir M, Rev E, Mizsey P, Fonyo Z, Comput. Chem. Eng., 23, 799 (1999)
- Fidkowski ZT, Krolikowski L, AIChE J., 33, 654 (1987)
- Muralikrishna K, Madhavan VKP, Shah SS, Trans IChemE., 80, 155 (2002)
- van Diggelen RC, Kiss AA, Heemink AW, Ind. Eng. Chem. Res., 49(1), 288 (2010)
- Agrawal R, Fidkowski ZT, Ind. Eng. Chem. Res., 37(8), 3444 (1998)
- Ammidunin KA, Smith R, Thong DYC, Towler GP, Trans IChemE., 79, 701 (2001)
- Bravo-Bravo C, Segovia-Hernandez JG, Gutierrez-Antonio C, Duran AL, Bonilla-Petriciolet A, Briones-Ramirez A, Ind. Eng. Chem. Res., 49(8), 3672 (2010)
- Karlsen AE, Esmaelpour A, Osmani K, Plunnecke KSB (cosupervisor: Mehdi Panahi) and Sigurd Skogestad, DME from natural gas (Autumn project) (2009), http://www.nt.ntnu.no/users/skoge/diplom/prosjekt09/dme-project/
- Chang E, Calado JCG, Streett WB, J. Chem. Eng. Data., 27, 293 (1982)
- Tsang CY, Streett WB, J. Chem. Eng. Data., 26, 155 (1981)
- Teodorescu M, Rasmussen P, J. Chem. Eng. Data., 46, 640 (2001)
- Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47 (2009)
- Biegler LT, Grossmann IE, Westerberg AW, Systematic methods of chemical process design, Prentice Hall Inc.: Upper Saddle River, New Jersey, 110 (1997)
- Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825 (2010)
- Long NVD, Lee MY, Asia-Pac. J. Chem. Eng., 6, 338 (2011)
- Emtir M, Rev E, Fonyo Z, Appl. Therm. Eng., 21, 1299 (2001)
- Triantafyllou C, Smith R, Chem. Eng. Res. Des., 70, 118 (1992)
- Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
- Finn AJ, Gas Sep. Purif., 10(3), 169 (1996)
- Long NVD, Lee MY, Comput. Chem. Eng., 37, 119 (2012)