화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.110, No.6, 675-678, 2010
The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene
In Japanese sake brewing, cerulenin-resistant sake yeasts produce elevated levels of ethyl caproate, an important flavor component. The FAS2 mutation FAS2-1250S of Saccharomyces cerevisiae generates a cerulenin-resistant phenotype. This mutation is dominant, and, in general, cerulenin-resistant diploid sake yeast strains carry this mutation heterozygously. Here we constructed diploid sake yeast with a homozygous mutation of FAS2 using the high-efficiency loss of heterozygosity method. The homozygous mutants grew more slowly in YPD medium than did the wild-type and heterozygous mutants, and they produced more ethyl caproate during sake brewing. In addition, although both the wild-type and heterozygous mutant were sensitive to 4 mg/l cerulenin, the homozygous mutant was resistant to more than 4 mg/l cerulenin. Next, we obtained a homozygous mutant of FAS2 without inducing genetic modification. After cultivating the heterozygous FAS2 mutant K-1801 in YPD, homozygous mutants were selected on medium containing high concentrations of cerulenin. Non-genetically modified yeast with a homozygous mutation of FAS2 produced 2.2-fold more ethyl caproate than did heterozygous yeast. Moreover, high-quality Japanese sake with a very rich flavor could be brewed using yeast containing a homozygous mutation in the FAS2 gene. 2010, The Society for Biotechnology, Japan. All rights reserved. (C) 2010, The Society for Biotechnology, Japan. All rights reserved.