International Journal of Molecular Sciences, Vol.12, No.8, 4836-4849, 2011
Genetic Characterization of Five Hatchery Populations of the Pacific Abalone (Haliotis discus hannai) Using Microsatellite Markers
The Pacific abalone, Haliotis discus hannai, is a popular food in Eastern Asia. Aquacultural production of this species has increased because of recent resource declines, the growing consumption, and ongoing government-operated stock release programs. Therefore, the genetic characterization of hatchery populations is necessary to maintain the genetic diversity of this species and to develop more effective aquaculture practices. We analyzed the genetic structures of five cultured populations in Korea using six microsatellite markers. The number of alleles per locus ranged from 15 to 64, with an average of 23.5. The mean observed and expected heterozygosities were 0.797 and 0.904, respectively. The inbreeding coefficient F(IS) ranged from 0.054 to 0.184 (mean F(IS) = 0.121 +/- 0.056). The genetic differentiation across all populations was low but significant (overall F(ST) = 0.009, P < 0.01). Pairwise multilocus F(ST) tests, estimates of genetic distance, and phylogenetic and principal component analyses did not show a consistent relationship between geographic and genetic distances. These results could reflect extensive aquaculture, the exchange of breeds and eggs between hatcheries and/or genetic drift due to intensive breeding practices. Thus, for optimal resource management, the genetic variation of hatchery stocks should be monitored and inbreeding controlled within the abalone stocks that are being released every year. This genetic information will be useful for the management of both H. discus hannai fisheries and the aquaculture industry.
Keywords:Pacific abalone;Haliotis discus hannai;genetic structure;hatchery populations;microsatellite loci