화학공학소재연구정보센터
Journal of Materials Science, Vol.47, No.3, 1148-1155, 2012
Effects of the molecular format of collagen on characteristics of electrospun fibres
Electrospinning is a process that is used to create nanofibres, which have the potential to be used in many medical and industrial applications. The molecular structure of the raw material is an important factor in determining the structure and quality of the electrospun fibres. In this study, we extracted collagen from a cold water fish species, hoki (Macruronus novaezelandiae), and prepared it in several different molecular formats (native triple helical collagen, denatured whole chains, denatured atelocollagen chains and gelatin) for electrospinning. Low molecular weight gelatin and atelocollagen did not form fibres. Treatment with 1,1,1,3,3,3 hexafluoro-2-propanol or 40% acetic acid denatured collagen molecules into intact alpha-chains prior to the electrospinning process. When using intact denatured collagen chains, 10% acetic acid was an effective aqueous-based solvent for producing uniform fibres. This information will be useful for the development of a non-toxic, aqueous solvent system suitable for industrial scale-up of the electrospinning process. Our results show that this low imino marine collagen is a suitable biopolymer for producing electrospun fibres.