Journal of Materials Science, Vol.47, No.4, 1985-1991, 2012
Controlled fabrication of noble metal nanoparticles loaded on the surfaces of cyclotriphosphazene-containing polymer nanotubes
We report on the fabrication of noble metal nanoparticles loaded on the surfaces of cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes of high stability. PZS nanotubes were first synthesized by precipitation polymerization between hexachlorocyclotriphosphazene and 4,4'-sulfonyldiphenol based on in situ template mechanism. Then the PZS nanotubes were directly used as scafford to load metal Au, Ag, and Pd nanoparticles, respectively, through cation complexation followed by gentle reduction. The structure and morphology of the metal/PZS nanocomposites were determined by means of Fourier transform infrared spectra, energy dispersive X-ray spectroscopy, elemental analysis, X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis (TGA). Results showed that the metal/PZS nanocomposites possessed 460 degrees C of initial thermal decomposition temperature under air atmosphere and the loading amount of metal nanoparticles on the PZS nanotube surfaces could be controlled easily. As-fabricated metal/PZS nanocomposites are expected to have potential applications in catalysis.