- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.29, No.7, 969-973, July, 2012
Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone
E-mail:
Ozone (O3) was employed as an oxygen source for the atomic layer deposition (ALD) of titanium dioxide (TiO2) based on tetrakis-dimethyl-amido titanium (TDMAT). The effects of deposition temperature and O3 feeding time on the film growth kinetics and physical/chemical properties of the TiO2 films were investigated. Film growth was possible at as low as 75 ℃, and the growth rate (thickness/cycles) of TiO2 was minimally affected by varying the temperatures at 150-225 ℃. Moreover, saturated growth behavior on the O3 feeding time was observed at longer than 0.5 s.
Higher temperatures tend to provide films with lower levels of carbon impurities. The film thickness increased linearly as the number of cycles increased. With thicker films and at higher deposition temperatures, surface roughening tended to increase. The as-deposited films were amorphous regardless of the substrate temperatures and there was no change of crystal phase even after annealing at temperatures of 400-600 ℃. The films deposited in 0.5 mm holes with an aspect ratio of 3 : 1 showed an excellent conformality.
- Durand HA, Brimaud JH, Hellman O, Shibata H, Sakuragi S, Makita Y, Gesbert D, Meyrueis P, Appl. Surf. Sci., 86, 122 (1995)
- Jung JA, Kwak DH, Oh DW, Park DM, Yang OB, Korean Chem. Eng. Res., 50(1), 11 (2012)
- Keshmiri M, Troczynski T, J. Non-Crystal. Solids., 324, 289 (2003)
- Choi MG, Kang KY, Lee YG, Kim KM, Korean Chem. Eng. Res., 50(1), 25 (2012)
- Kim H, Kushto GP, Arnold CB, Kafafi ZH, Pique A, Appl. Phys. Lett., 85, 64 (2004)
- Yu JG, Zhao XJ, Zhao QN, Thin Solid Films, 379(1-2), 7 (2000)
- Abou-Helal MO, Seeber WT, Appl. Surf. Sci., 195(1-4), 53 (2002)
- Keshmiri M, Mohseni M, Troczynski T, Appl. Catal., B53, 209 (2004)
- Tada H, Tanaka M, Langmuir, 13(2), 360 (1997)
- Suda Y, Kawasaki H, Ueda T, Ohshima T, Thin Solid Films, 453-54, 162 (2004)
- Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY, Adv. Mater., 16(14), 1197 (2004)
- Lim JW, Yun SJ, Lee JH, Electrochem. Solid State Lett., 7(11), F73 (2004)
- Dendooven J, Sree SP, Keyser KD, Deduytsche D, Martens JA, Ludwig KF, Detavernier C, J. Phys. Chem. C., 115, 6605 (2011)
- Kim SK, Hoffmann-Eifert S, Reiners M, Waser R, J. Electrochem. Soc., 158(1), D6 (2011)
- Xie Q, Musschoot J, Deduytsche D, Van Meirhaeghe RL, Detavernier C, Van den Berghe S, Jiang YL, Ru GP, Li BZ, Qu XP, J. Electrochem. Soc., 155(9), H688 (2008)
- Rai VR, Agarwal S, J. Phys. Chem. C., 112, 9552 (2008)
- Kim SK, Lee SY, Seo M, Choi GJ, Hwang CS, J. Appl.Phys., 102, 024109 (2007)
- Pheamhom R, Sunwoo C, Kim DH, J. Vac. Sci. Technol. A, 24(4), 1535 (2006)
- Lim GT, Kim DH, Thin Solid Films, 498(1-2), 254 (2006)
- Rose M, Niinisto J, Michalowski P, Gerlich L, Wilde L, Endler I, Bartha JW, J. Phys. Chem. C., 113, 21825 (2009)
- Liu XY, Ramanathan S, Longdergan A, Srivastava A, Lee E, Seidel TE, Barton JT, Pang D, Gordon RG, J. Electrochem. Soc., 152(3), G213 (2005)
- Puurunen RL, J. Appl. Phys., 97, 121301 (2005)
- Potts SE, Keuning W, Langereis E, Dingemans G, van de Sanden MCM, Kessels WMM, J. Electrochem. Sco., 157, 66 (2010)
- Wang Y, Dai M, Ho MT, Wielunski LS, Chabal YJ, Appl.Phys. Lett., 90, 22906 (2007)
- Torres GR, Lindgren T, Lu J, Granqvist CG, Lindquist SE, J. Phys. Chem. B, 108(19), 5995 (2004)