Clean Technology, Vol.18, No.2, 216-220, June, 2012
PFC 배출 저감을 위한 파일롯 규모 촉매 공정 연구
A Study on Catalytic Process in Pilot Plant for Abatement of PFC Emission
E-mail:
초록
본 연구의 목적은 30 L의 촉매가 장착된 파일롯 규모의 반응 시스템에서 상업용 촉매(Co/ZrO2-Al2O3)의 PFC 분해 성능을 검증하는 것이다. 공간 속도(GHSV) 1,800 h^(-1)의 조건에서 SF6의 농도를 증가시키면 T95가 증가하였는데 SF6의 농도가 1,000~10,000 ppm일 때 T95가 580~610 ℃ 범위로 나타났으며, 열 소각을 했을 때의 T95인 1600 ℃보다 매우 낮은 온도임을 알 수 있다. 650 ℃의 반응 온도 하에서 72시간 동안에 99% 이상의 SF6의 전환율이 유지되어 촉매의 안정성이 확보되었다. 또한 SF6 전환율을 99% 이상 유지하기 위해서는 GHSV를 2,000 h^(-1) 이하인 조건에서 운전해야 함을 알 수 있었다. CF4의 분해 반응의 경우 T95 온도가 710 ℃이었으며, SF6의 T95 온도보다 높은 온도가 필요함을 알 수 있었다.
The objective of the present study was to evaluate catalytic performance of a commercial catalyst (Co/ZrO2-Al2O3) for the decomposition of perfluorinated chemicals in a pilot scale reactor containing 30 L of catalysts. At a reaction condition of GHSV 1,800 h^(-1), T95 of SF6 was increased from 580 to 610 ℃ with increasing of SF6 concentration from 1,000 to 10,000 ppm. T95
of SF6 in catalytic decomposition was much smaller than that of thermal decomposition (1,600 ℃). The 99% conversion of SF6 was maintained for 72 hours a reaction temperature of 650 ℃. In order to maintain the SF6 conversion more than 99%, it is necessary to operate at a reaction condition of GHSV less than 2,000 h^(-1). An operating temperature of 710 ℃ was required to achieve >95% destruction of the CF4, which was much higher than that of catalytic decomposition of SF6.
- Park YK, “Waste Gas Treatment System for Semiconductor Process,” Korea Research Institute of Chemical Technology, Report, July. (2004)
- Choi W, Yi J, Lee MC, Kim P, “Composite Catalyst of Porous Alumina and Transition Metal for Perfluorocarbon Destruction and Process Fordestructing Perfluorocarbon Using the Same,” Korea Patent Application No. 10-2003-0035665 (2003)
- Brown RS, Rossin JA, Thomas CJ, “Catalytic Process for Control of PFC Emissions,” Semiconductor International,, 209 (2001)
- Park YK, Jeon J, Kim HY, “Catalyst for Decomposition of Perfluoro-compound in Waste-gas and Method of Decomposition with Thereof,” Korea Patent No. 10-0461758 (2004)
- Han SH, Park HW, Kim TH, Park DW, Clean Technol., 17(3), 250 (2011)
- El-Bahy ZM, Ohnishi R, Ichikawa M, Appl. Catal. B: Environ., 40(2), 81 (2003)
- Tajima M, Niwa M, Fujii Y, Koinuma Y, Aizawa R, Kushiyama S, Kobayashi S, Mizuno K, Ohuchi H, Appl. Catal. B: Environ., 9(1-4), 167 (1996)
- Kato T, Mori T, Ohyama R, Tamaki J, Greenhouse Gas Control Technologies, Elsevier Science, Oxford, 1803 (2003)
- Park NK, Park HG, Lee TJ, Chang WC, Kwon WT, Catal. Today., 185, 247 (2012)
- Behitoshi A, Doraichi K, “Reactive Agent and Process for Decomposing Nitrogen Fluoride,” Korea Patent No. 10-0356305 (2002)
- Rossin JA, “Catalyst Composition and Method of Controlling PFC and HFC Emissions,” U.S. Patent No. 6,676,913 (2004)