화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.24, No.2, 105-111, June, 2012
Viscoelasticity of coagulated alumina suspensions
E-mail:
The solid-to-liquid transition of a model coagulated alumina suspension at concentrations above the gel point was investigated to explore the critical parameter for describing network failure under shear forces. Static (creep and creep-recovery) and dynamic (small and large amplitude oscillatory) shear experiments were combined to examine shear softening in these systems and time-based dependence in the yielding dynamics. The particulate network structure exhibits failure and viscous dissipation under creep and oscillatory shear tests at stress values well below the conventionally defined yield stress. Results from strain recovery tests highlight a time-dependence for failure, where only partial recovery of strain energy was possible once a specific duration of creep was surpassed. The system was observed to fail at a common strain value across all methods of rheology testing. These results are self-consistent, showing a clear transition from the linear to non-linear viscoelastic region for a coagulated material under shear stress. It provides the starting point to incorporate mechanical viscoelastic models to extract time constants for yielding behaviour. This work also presents one of the first reported LAOS and creep results for particulate suspensions using a vane geometry.
  1. Barnes HA, A Handbook of Elementary Rheology., University of Wales Institute of Non-Newtonian Fluid Mechanics, Aberystwyth. (2000)
  2. Barnes HA, Hutton JE, Walters K, 1993, An Introduction to Rheology, Elsevier
  3. Barnes HA, Walters K, Rheologica Acta., 24, 323 (1985)
  4. Barrie CL, Griffiths PC, Abbott RJ, Grillo I, Kudryashov E, Smyth C, J. Colloid Interface Sci., 272(1), 210 (2004)
  5. Bird RB, Dai G, Yarusso BJ, Reviews in Chemical Engineering., 1, 1 (1982)
  6. Buscall R, McGowan JI, Morton-Jones AJ, Journal of Rheology., 37, 621 (1993)
  7. Buscall R, White LR, AIChE Journal., 83, 873 (1987)
  8. Channell GM, Zukoski CF, AIChE J., 43(7), 1700 (1997)
  9. Evans ID, Journal of Rheology., 36, 1313 (1992)
  10. Ewoldt RH, McKinley GH, Rheol. Acta, 49(2), 213 (2010)
  11. Fisher DT, Clayton SA, Boger DV, Scales PJ, J. Rheol., 51(5), 821 (2007)
  12. Giacomin AJ, Dealy JM, Large-Amplitude Oscillatory Shear Applied Science., Elsevier Applied Science, London (1993)
  13. Gibaud T, Frelat D, Manneville S, Soft Matter., 15, 3482 (2010)
  14. Hartnett JP, Hu RYZ, Journal of Rheology., 33, 671 (1989)
  15. Johnson SB, Franks GV, Scales PJ, Boger DV, Healy TW, Int. J. Miner. Process., 58(1), 267 (2000)
  16. Kapur PC, Scales PJ, Boger DV, Healy TW, AIChE J., 43(5), 1171 (1997)
  17. Le Grand A, Petekidis G, Rheol. Acta, 47(5-6), 579 (2008)
  18. Liddell PV, Boger DV, Journal of Non-Newtonian Fluid Mechanics., 63, 235 (1995)
  19. Macosko CW, Rheology: Principles, measurements and applications., John Wiley & Sons (1994)
  20. Nguyen QD, Boger DV, Journal of Rheology., 27, 321 (1983)
  21. Nguyen QD, Boger DV, Journal of Rheology., 29, 335 (1985)
  22. Nguyen QD, Boger DV, Rheologica Acta., 24, 427 (1985)
  23. Nguyen QD, Boger DV, Annual Revision of Fluid Mechanics., 24, 47 (1992)
  24. Noirez L, Baroni P, Mendil-Jakani H, Polymer International., 58, 962 (2009)
  25. Stickland AD, Buscall R, J. Non-Newton. Fluid Mech., 157(3), 151 (2009)
  26. Uhlherr PHT, Guo J, Tiu C, Zhang XM, Zhou JZQ, Fang TN, J. Non-Newton. Fluid Mech., 125(2-3), 101 (2005)
  27. Wilhelm M, Macromolecular Materials and Engineering., 287, 83 (2002)
  28. Wilhelm M, Maring D, Spiess HW, Rheol. Acta, 37(4), 399 (1998)
  29. Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess HW, Rheol. Acta, 39(3), 241 (2000)
  30. Zhou ZW, Scales PJ, Boger DV, Chem. Eng. Sci., 56(9), 2901 (2001)
  31. Zhou ZW, Solomon MJ, Scales PJ, Boger DV, J. Rheol., 43(3), 651 (1999)