- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.36, No.4, 401-406, July, 2012
KUSA-A1 골조세포 함유 키토산 지지체를 이용한 생체내 골재생
In vivo Bone Regeneration by Using Chitosan Scaffolds with KUSA-A1 Oesteoblast Cells
E-mail:
초록
KUSA-A1 골조세포로부터 골재생을 유도하기 위하여, 스폰지형(CSS) 및 부직포형(CSNW)의 키토산 지지체를 적용하였다. CSNW의 표면적 및 공극 크기는 CSS에 비해 상대적으로 큰 값을 나타낸 반면, 공극 부피는 CSNW의 경우가 CSS에 비해 작은 값을 보였다. 세포고정 시험 결과는 CSNW의 경우가 더 적합한 결과를 나타내었으며, 이는 지지체의 넓은 표면적에 기인한 것으로 판단되었다. In vivo 실험을 위하여 세포를 각각의 지지체에 투여 후 일주일간 배양하였으며, BALB/C 무모생쥐의 피하조직에 이식하였다. 이식된 지지체는 각각 수술후 1, 4, 6 및 8주에 채취되어 면역학적 염색을 실시하였다. CSS는 수술후 4주에서 6주 사이에 붕괴되기는 하였으나, 조직의 안정성은 CSNW에 비해 우수한 것으로 관찰되었다. 골조직의 생성은 CSNW와 CSS에 대해 각각 4주 및 8주에서 이루어짐을 확인하였다.
For bone regeneration from KUSA-A1 oesteoblast cells (KUSA), chitosan (CS) scaffolds possessing different surface properties, sponge-type (CSS) and nonwoven-type (CSNW), were manufactured. Surface area and pore size of CSNW were larger than those of CSS. On the other hand, the pore volume of CSNW was smaller than that of CSS. Cell attachment evaluation showed CSNW was more adequate then CSS, and this was attributed to the large surface area. For in vivo investigation, KUSA were seeded into CS scaffolds in wells followed by a week of cell culture. Obtained CS scaffolds with KUSA were implanted on the subcutaneous tissue of BALB/C nude mice. After surgery, implanted scaffolds were harvested and assayed by immunological staining. Network stability of CSS was better than that of CSNW, even if CSS scaffolds were destroyed between 4 and 6 weeks. Calcification was observed after 4 and 8 weeks for CSNW and
CSS, respectively.
- Jang JH, Castano O, Kim HW, Adv. Drug Deliv. Rev., 61, 1065 (2009)
- Nerem RM,,Sambanis A, Tissue Eng., 1, 3 (1995)
- Burg KJL, Porter S, Kellam JF, Biomaterials., 21, 2347 (2000)
- Hutmacher DW, Biomaterials., 21, 2529 (2000)
- Kasten P, Beyen I, Newmeyer P, Luginbuhl R, Bohner M, Richter W, Acta Biomater., 4, 1904 (2008)
- Ragetly GR, Griffon DJ, Lee HB, Fredericks LP, Evans WG, Chung YS, Acta Biomater., 6, 1430 (2010)
- Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M, Biomaterials., 18, 769 (1997)
- Kon M, de Visser AC, Plast. Reconstr. Surg., 67, 288 (1981)
- Griffon DJ, Sedighi MR, Schaeffer DV, Eurell HA, Johnson AL, Acta Biomater., 2, 313 (2006)
- Lewandrowski KU, Gresser JD, Bondre S, Silva AE, Wise DL, Trantolo DJ, J. Biomater. Sci. Polym. Ed., 11, 879 (2000)
- Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR, J. Biomater. Master. Res. A., 66, 283 (2003)
- Jayakumar R, Prabaharan M, Nair SV, Tamura H, Bio.Technol. Adv., 28, 142 (2010)
- Nagahama H, Kashiki T, New H, Jayakumar R, Furuike T, Tamura H, Carbohydr. Polym., 73, 456 (2008)
- Nagahama H, New H, Jayakumar R, Koiwa S, Furuike T, Tamura H, Carbohydr. Polym., 73, 295 (2008)
- Jayakumar R, Reis RL, Mano JF, J. Bioact. Compat.Polym., 21, 327 (2006)
- Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Carbohydr. Polym., 77, 863 (2009)
- Prabaharan M, Mano JF, Drug Deliv., 12, 41 (2005)
- Anitha A, Divya Rani VV, Krishna R, Sreeja,Selvamurugan N, Nair SV, Tamura H, Jayakumar R, Carbohydr. Polym., 78, 672 (2009)
- Muramatsu K, Masuda S, Yoshihara Y, Fujisawa A, Polym. Degrad. Stab., 81, 327 (2003)
- Matsumoto S, Shibuya I, kusakari S, Segawa K, Uyama T, Shimada A, Umezawa A, Biochemica. Biophysica. Acta., 1725, 57 (2005)
- Bhardwah J, Pilliar RM, J. Biomed. Mater. Res., 57, 190 (2001)
- Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM, Biomaterials., 27, 3934 (2006)
- Karps NS, Macarty JG, Scheriver JS, Ann. Plast.Surg., 89, 1 (1992)
- Califano L, Cortese A, Zupi A, J. Oral Maxillofac. Surg., 52, 1179 (1994)
- Komuro Y, Takato T, Harii K, Plast. Reconstr. Surg., 94, 152 (1994)
- Cho BC, Chung HY, Lee DG, Yang JD, Park JW, Roh KH, Kim GU, Lee DS, Kwon IC, Bae EH, Jang KH, Park RW, Kim IS, J. Oral Maxillofac. Surg., 63, 1753 (2005)