화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.4, 478-485, July, 2012
다양한 이축연신 비율에 따른 투명 폴리이미드 나노복합체 필름
Transparent Polyimide Nanocomposite Films with Various Equi-biaxial Stretching Ratios
E-mail:
초록
Bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride(BTDA)와 1,3-bis(3-aminophenoxy)benzene(BAPB) 단량체를 사용하여 중합한 폴리아믹산(poly(amic acid))에 용액 삽입법을 이용해서 다양한 함량의 유기화 점토를 넣은 후 열 이미드화 방법을 통해 투명한 나노복합체 polyimide(PI) 필름을 합성하였다. 0-1.5 wt%의 다양한 함량의 유기화점토를 포함하는 복합체 필름을 제조한 후, 필름의 광 투과성, 모폴로지, 그리고 가스차단성을 각각 측정하였다. 1.0 wt%의 Cloisite 30B가 포함된 복합체에서 가장 우수한 가스차단성이 측정되었으며, 유기화 점토의 함량이 증가하게 되면 가스차단성은 오히려 감소하였다. PI 복합체 필름은 우수한 광 투과성을 가지며 대체로 무색을 나타내었다. 하지만 점토의 함량이 증가함에 따라 광 투과성은 조금씩 감소하였다. Cloisite 30B가 포함된 투명한 PI 복합체 필름의 광 투과성과 가스차단성을 더 자세히 연구하기 위하여 100-140%까지 다양한 비율로 이축연신하였다. 120% 이상 연신된 PI 복합체 필름에서 고분자 매트릭스에 점토가 균일하게 분산되어 박리되었음을 확인하였으며, 가장 높은 가스 차단성은 130%로 이축연신된 필름에서 확인하였다.
A series of transparent polyimide (PI) nanocomposite films was synthesized from bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BTDA) and 1,3-bis(3-aminophenoxy)benzene (BAPB) with various organoclay contents via solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. Varying organoclay loading in a range of 0 to 1.5 wt% produced variations in the optical transparency, morphology, and oxygen barrier property of the hybrids. An optimum oxygen barrier property was observed for the hybrids containing 1.0 wt% Cloisite 30B; these properties were degraded gradually by further increases in the clay content. The PI hybrid films were found to exhibit excellent optical transparency and almost no color. However, the transparency of the hybrid films decreased slightly with increasing organoclay content. Transparent PI hybrid films containing 1.0 wt% Cloisite 30B were stretched equi-biaxially with various stretching ratios in a range of 100-140% to investigate their optical transparency and oxygen permeability in detail; the variations of clay dispersion and morphology were also determined as a function of equi-biaxial stretching ratio. PI hybrid films with ≥ 120% stretching were found to contain homogeneously dispersed clay in the polymer matrix and exfoliated nanocomposites. The highest barrier to oxygen permeation was found at an equi-biaxial stretching ratio of 130%.
  1. Chung CL, Hsiao SH, Polymer, 49(10), 2476 (2008)
  2. Wang HW, Dong RX, Chu HC, Chang KC, Lee WC, Mater. Chem. Phys., 94(1), 42 (2005)
  3. Wang XL, Li YF, Gong CL, Ma T, Yang FC, J. Fluor.Chem., 129, 56 (2008)
  4. Ge Z, Fan L,Yang S, Eur. Polym. J., 44, 1252 (2008)
  5. Hsiao SH, Chen YJ, Eur. Polym. J., 38, 815 (2002)
  6. Hasegawa M, Horiuchi M, Wada Y, High Perform. Polym., 19, 175 (2007)
  7. Li TL, Hsu SLC, Eur. Polym. J., 43, 3368 (2007)
  8. Zhao X, Lin J, Yang H, Fan L, Yang S, Eur. Polym. J., 44, 808 (2008)
  9. Hasegawa M, Horie K, Prog. Polym. Sci., 26, 259 (2001)
  10. Omote T, Yamaoka T, Koseki K, J. Appl. Polym. Sci., 38, 389 (1989)
  11. Xu JW, Chng ML, Chung TS, He CB, Wang R, Polymer, 44(16), 4715 (2003)
  12. Jang W, Shin D, Choi S, Park S, Han H, Polymer, 48(7), 2130 (2007)
  13. Ma SL, Kim YS, Lee JH, Kim JS, KIm I, Won JC, Polym.(Korea), 29(2), 204 (2005)
  14. Yang CP, Su YY, Wen SJ, Hsiao SH, Polymer, 47(20), 7021 (2006)
  15. Yang CP, Su YY, Polymer, 46(15), 5778 (2005)
  16. Yang CY, Hsu SLC, Chen JS, J. Appl. Polym. Sci., 98(5), 2064 (2005)
  17. Choi IH, Chang JH, Polym.(Korea), 34(5), 480 (2010)
  18. Min U, Chang JH, Polym.(Korea), 34(6), 495 (2010)
  19. Jang W, Shin D, Choi S, Park S, Han H, Polymer, 48(7), 2130 (2007)
  20. Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD, Polymer, 40(16), 4571 (1999)
  21. Jin HS, Chang JH, J. Appl. Polym. Sci., 107(1), 109 (2008)
  22. Ghosal K, Freeman BD, Chern RT, Alvarez JC, Delacampa JG, Lozano AE, Deabajo J, Polymer, 36(4), 793 (1995)
  23. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K, Chem. Mater., 14, 4654 (2002)
  24. Joly C, Smaihi M, Porcar L, Noble RD, Chem. Mater., 11, 2331 (1999)
  25. Ebeling T, Norek S, Hasan A, Hiltner A, Baer E, J. Appl. Polym. Sci., 71(9), 1461 (1999)
  26. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  27. Bharadwaj RK, Macromolecules, 34(26), 9189 (2001)
  28. Nielson LEJ, Macromol. Sci. Chem., 5, 929 (1967)
  29. Mittal V, Barrier Properties of Polymer Clay Nanocomposites, Nanotech Sci Tech Series, Nova Science Publishers, Inc., New York, 73 (2009)
  30. Coolier JR, Ind. Eng. Chem., 61, 72 (1969)
  31. Fan G, Di Maio L, Incarnato L, Scarfato P, Acierno D, Packag. Technol. Sci., 13, 123 (2000)
  32. Jeol S, Fenouillot F, Rousseau A, Masenelli-Varlot K, Gauthier C, Briois JF, Macromolecules, 40(9), 3229 (2007)
  33. Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J, Polymer, 46(25), 11624 (2005)
  34. Morgan AB, Gilman JW, J. Appl. Polym. Sci., 87(8), 1329 (2003)
  35. Saeed MB, Zhan MS, Eur. Polym. J., 42, 1844 (2006)
  36. Pavia DL, Lampman GM, Kriz GS, Introduction to Spectroscopy, Hartcourt, Washington, Chapter 2 (2001)
  37. Liang ZM, Yin J, Wu JH, Qiu ZX, He FF, Eur.Polym. J., 40, 307 (2004)
  38. Davis CH, Mathias LJ, Gilman JW, Schiraldi DA, Shields JR, Trulove P, Sutto TE, Delong HC, J. Polym. Sci. B: Polym. Phys., 40(23), 2661 (2002)
  39. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Chem.Mater., 8, 2628 (1996)
  40. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  41. Ju CH, Kim JC, Chang JH, J. Appl. Polym. Sci., 106(6), 4192 (2007)
  42. Ray SS, Okamoto M, Prog. Polym. Sci., 28, 1539 (2003)
  43. Petropoulos JH, Adv. Polym. Sci., 64, 93 (1985)
  44. Chaiko DJ, Leyva AA, Chem. Mater., 17, 13 (2005)
  45. Carrera-Figueiras C, Aguilar-Vega M, J. Polym. Sci. B: Polym. Phys., 43(19), 2625 (2005)
  46. Xu B, Zheng Q, Song YH, Shangguan Y, Polymer, 47(8), 2904 (2006)
  47. Sakaya T, Osaki N, J. Photopolym. Sci. Technol., 19, 197 (2006)
  48. Rajeev RS, Harkin-Jones E, Soon K, McNally T, Menary G, Armstrong CG, Martin PJ, Eur. Polym. J., 45, 332 (2009)
  49. Ke YC, Long CF, Qi ZN, J. Appl. Polym. Sci., 71(7), 1139 (1999)