Applied Chemistry for Engineering, Vol.23, No.4, 372-376, August, 2012
CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과
Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites
E-mail:
초록
탄소나노튜브는 좋은 전기 기계적 및 열적 특성을 가진 복합 재료 분야에서 가장 이상적인 나노 충전재이다. 따라서 탄소나노튜브의 복합 재료는 전도성 재료, 고강도를 가지면서 가벼운 무게를 가지는 재료에 이용된다. 탄소나노튜브 복합재료의 주요 문제점은 탄소나노튜브의 나쁜 분산에 있다. 본 연구에서는 다중벽 탄소나노튜브(MWNT)를 물리적 방법으로 전처리하였다. 전처리 후, 고분자/MWNT nanocomposites는 용해 공정에 의해 분산되었다. 물리적 방법은 고분자 wrapping 방법에 의해 준비되었다. ABS/MWNT 복합 재료의 기계적 및 전기적 특성을 SAN과 함께 wrapping된 MWNT와 미처리된 MWNT와 혼합된 ABS의 속성을 비교하여 연구하였다. MWNT가 wrapping된 복합체의 인장강도는 증가하였으나 충격강도는 감소한 수치를 보였다. 전기적 물성의 향상에는 미처리시료와 비교해 볼 때 큰 효과가 없었다.
Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes(MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites
increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.
- Thostenson ET, Li C, Chou TW, Compos Sci. Technol., 65, 491 (2005)
- Breuer O, Sundararaj U, Polym. Compos., 25, 630 (2004)
- van der Elst M, Klein CPAT, de Blreck-Hogervorst JM, Patka P, Haarman HJTM, Biomaterials., 20, 121 (1999)
- Mathers NJ, Czernuszka JT, J. Mater. Sci. Lett., 10, 992 (1991)
- Iijima S, Nature (London)., 56, 354 (1991)
- O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE, Chem. Phys. Lett., 342(3-4), 265 (2001)
- Ding W, Eitan A, Fisher FT, Chen X, Dikin DA, Nano Lett., 3, 1593 (2003)
- Guo H, Sreekumar TV, Liu T, Minus M, Kumar S, Polymer, 46(9), 3001 (2005)
- Coleman JN, Khan U, Blau WJ, Gun’ko YK, Polymer Compos., 44, 1624 (2006)
- Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI, Chem. Phys. Lett., 330(3-4), 219 (2000)
- Kumar S, Dang TD, Arnold FE, Bhattacharyya AR, Min BG, Zhang XF, Vaia RA, Park C, Adams WW, Hauge RH, Smalley RE, Ramesh S, Willis PA, Macromolecules, 35(24), 9039 (2002)
- Jang BN, Wilkie CA, Polymer, 46(23), 9702 (2005)