화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.4, 409-415, August, 2012
급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용)
Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate)
E-mail:
초록
폴리머 콘크리트 복합재료의 제조에 재활용하기 위하여 산업폐기물로 처리되고 있는 제강슬래그를 아토마이징 공법으로 구형의 골재를 제조하였다. 구형의 급냉 제강슬래그는 입도에 따라 폴리머 콘크리트 복합재료의 잔골재(강모래)와 굵은 골재(쇄석)를 대체하여 사용하였다. 급냉 제강슬래그를 사용하여 제조한 폴리머 콘크리트 복합재료의 제 물성을 조사하기 위하여 폴리머 결합재의 첨가율과 급냉 제강슬래그의 대체량에 따라 다양한 배합의 폴리머 콘크리트공시체를 제조하여 물성시험을 실시하였다. 시험결과, 급냉 제강슬래그를 적정량 대체하여 사용한 공시체의 기계적 강도가 현저히 향상되었으며(최대압축강도 117.1 MPa), 폴리머 콘크리트 복합재료의 생산원가에 가장 큰 영향을 미치는 폴리머 결합재의 사용량을 현저히 절감할 수 있었다. 그러나 폴리머 콘크리트 복합재료의 내열수성시험에서 공시체의 기계적 강도가 현저히 감소되었다.
To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.
  1. Hwang EH, Hwang TS, J. Ind. Eng. Chem., 13(4), 585 (2007)
  2. Kim JM, Cho SH, Kwon KJ, Kim MH, J. Archi. Inst.Korea., 21, 121 (2005)
  3. Hwang EH, Ko YS, Kim JM, Hwang TS, J. Ind. Eng. Chem., 15(5), 628 (2009)
  4. Kim JM, Kwak EG, Bae KS, J. Korea Conc. Instit., 19, 549 (2007)
  5. Montgomery DG, Wang G, Cem. Conc. Res., 21, 1083 (1991)
  6. Montgomery DG, Wang G, Cem. Conc. Res., 22, 755 (1992)
  7. Kim JM, Cho SH, Oh SY, Kwak EG, Mag. KoreaConc., Instit., 19, 39 (2007)
  8. Oh OS et al., Patent No. 10-0098062-0000 (1996)
  9. Fowler DW, Cem. Conc. Res., 21, 449 (1999)
  10. Gorninski JP, Molin DCD, Kazmierczak CS, Cem.Conc. Res., 34, 2091 (2004)
  11. Haidar M, Ghorbel E, Toutanji H, Const. Build. Mater., 25, 1632 (2011)
  12. Abdel-Fattah H, El-Hawary MM, Const. Build. Mater., 13, 253 (1999)
  13. Gorninski JP, Molin DCD, Kazmierczak CS, Cem.Conc. Compos., 29, 637 (2007)
  14. Yoshihiko Ohama, Proc. 12th Inter. Cong. on polym. in Conc., ed. Yeon KS, 12, 37, Chuncheon (2007)
  15. Gemert DV, Czarnecki L, et al, Cem. Conc. Compos., 27, 926 (2005)
  16. San-Jose JT, Vegas IJ, Frıas M, Const. Build. Mater., 22, 2031 (2008)
  17. Jo BW, Park SK, Kim DK, Const. Build. Mater., 22, 14 (2008)
  18. Soraru GD, Tassone P, Const. Build. Mater., 18, 561 (2004)
  19. Evbuomwan NFO, Proc. 6th Inter. cong. on Polym. in Conc., eds. Yuan HY, Keru W, Zhiyuan C, 6, 52, Shanghai (1990)
  20. Semerad E, Kremnitzer P, Lacom W, holub F, Sattler P, Proc. 5th Inter. cong. on Polym. in Conc., ed. Staynes BW, 5, 223, Brighton (1987)