Journal of Physical Chemistry B, Vol.114, No.16, 5301-5308, 2010
Influence of Ovalbumin on CaCO3 Precipitation during in Vitro Biomineralization
As a major constituent of egg white matrix, ovalbumin has long been perceived to be implicated in the formation of avian eggshells, in particular, the mammillary layer. However, very little is known about the detailed mechanism by which this protein mediates shell calcification. By the combined studies of AFM, SEM, and TEM, we have investigated the influence of ovalbumin on CaCO3 precipitation under in vitro mineralization conditions. We observed that the influence was multifold. This protein modified the morphology of calcite crystals through a distinct anisotropic process with respect to the four crystal step edges. AFM characterization revealed that the modification was initiated at the obtuse-obtuse step corner and propagated predominantly along the obtuse steps. Furthermore, the protein favored the existence of unstable phases such as amorphous calcium carbonate and crystalline vaterite. In contrast, lysozyme, another protein also present in the system, played a very different role in modifying calcite morphology. The mechanistic understanding gained from this study is clearly also of practical significance in developing advanced inorganic CaCO3 materials with the aid of morphological manipulation of crystalline structures via different protein mediation.