Journal of Physical Chemistry B, Vol.114, No.16, 5605-5616, 2010
Understanding Microscopic Binding of Human Microsomal Prostaglandin E Synthase-1 (mPGES-1) Trimer with Substrate PGH(2) and Cofactor GSH: Insights from Computational Alanine Scanning and Site-directed Mutagenesis
Microsomal prostaglandin E synthase-1 (mPGES-1) is an essential enzyme involved in a variety of diseases and is the most promising target for the design of next-generation anti-inflammatory drugs. In order to establish a solid structural base, we recently developed a model of mPGES-1 trimer structure by using available crystal structures of both microsomal glutathione transferase-1 (MGST1) and ba3-cytochrome c oxidase as templates. The mPGES-1 trimer model has been used in the present study to examine the detailed binding of mPGES-1 trimer with substrate PGH(2) and cofactor GSH. Results obtained from the computational alanine scanning reveal the contribution of each residue at the protein ligand interaction interface to the binding affinity, and the computational predictions are supported by the data obtained from the corresponding wet experimental tests. We have also compared our mPGES-1 trimer model with other available 3D models, including an alternative homology model and a low-resolution crystal structure, and found that our mPGES-1 trimer model based on the crystal structures of both MGST1 and ba3-cytochrome c oxidase is more reasonable than the other homology model of mPGES-1 trimer constructed by simply using a low-resolution crystal structure of MGST1 trimer alone as a template. The available low-resolution crystal structure of mPGES-1 trimer represents a closed conformation of the enzyme and thus is not suitable for studying mPGES-1 binding with ligands. Our mPGES-1 trimer model represents a reasonable open conformation of the enzyme and is therefore promising for studying mPGES-1 binding with ligands in future structure-based drug design targeting mPGES-1.