화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.114, No.48, 15753-15758, 2010
Stability of Coronene at High Temperature and Pressure
The infrared response of coronene (C24H12) under pressure and temperature conditions up to 10 GPa and 300 degrees C is examined in situ using a diamond anvil cell and synchrotron-source Fourier transform infrared (FTIR) spectroscopy Coronene is a polycyclic aromatic hydrocarbon that is present in the interstellar medium and meteorites which may have contributed to the Earth's primordial carbon budget It appears to undergo a reversible phase transition between 2 and 3 2 GPa at ambient temperature new intramolecular bonds in the region 840-880 cm(-1) result from compression We document the shift of spectral features to higher wavenumbers with increasing pressure but rind this change suppressed by increased temperature By investigating the stability of coronene over a range of naturally occurring conditions found in a range of environments, we assess the survival of the molecule through various terrestrial and extraterrestrial processes Coronene has previously been shown to survive atmospheric entry during Earth accretion, this can now be extended to include survival through geological processes such as subduction and silicate melting of the rock cycle opening the possibility of extraterrestrial coronene predating terrestrial accretion existing on Earth