Journal of Physical Chemistry B, Vol.115, No.2, 288-299, 2011
Modeling the Dissociation Conditions of Salt Hydrates and Gas Semiclathrate Hydrates: Application to Lithium Bromide, Hydrogen Iodide, and Tetra-n-butylammonium Bromide plus Carbon Dioxide Systems
A thermodynamic approach is proposed to determine the dissociation conditions of salt hydrates and semiclathrate hydrates. The thermodynamic properties of the liquid phase are described with the SAFT-VRE equation of state, and the solid-liquid equilibria are solved by applying the Gibbs energy minimization criterion under stoichiometric constraints. The methodology is applied to water + halide salt systems, and an excellent description of the solid liquid coexistence curves is obtained. The approach is extended to the water + tetra-n-butylammonium bromide (TBAB) binary mixture, and an accurate representation of the solid liquid coexistence curves and dissociation enthalpies is obtained. The van der Waals-Platteeuw (vdW-P) theory combined with the new model for salt hydrates is used to determine the dissociation temperatures of semiclathrate hydrates of TBAB + carbon dioxide. A good description of the dissociation pressures of CO2 semiclathrate hydrates is obtained over wide temperature, pressure, and TBAB composition ranges (AAD = 10.5%). For high TBAB weight fractions the new model predicts a change of hydrate structure from type A to type B as the partial pressure of CO2 is increased. The model can also capture a change of behavior with respect to TBAB concentration, which has been observed experimentally: an increase of the TBAB weight fraction leads to a stabilization of the gas semiclathrate hydrate at low initial TBAB concentrations below the stoichiometric composition but leads to a destabilization of the hydrate at TBAB concentrations above the stoichiometric composition.