- Previous Article
- Next Article
- Table of Contents
Korean Journal of Rheology, Vol.4, No.1, 70-81, June, 1992
섬유현탁액의 섬유배향이 압출팽창에 미치는 영향
The Effect of Fiber Orientation on the Extrudate Swell of Fiber Suspensions
초록
비교적 묽은 섬유현탁액의 압출팽창 유동을 수치모사하기 위하여, 유동장과 섬유배향 사이의 상호작용을 고려하고 연속체이론에 기초한 유변방정식을 사용하였다. 또한 섬유배향분포를 얻기 뤼하여 배향텐서로 표시된 섬유배향방정식을 사용하였는데, 이때 섬유간 상호작용의 효과를 고려해 주기 위하여 현상학적 확산항을 추가하였다. 실험결과와 비교가 용이한 원통관을 통과하는 섬유현탁액의 압출팽창 유동을 수치모사한 결과, 관 입구에서 섬유가 유선방향으로 정렬되어 유입될 때 현탁강도가 증가함에 따라 팽창비는 감소함을 알 수 있었다. 하지만 관 길이가 짧고 또한 관 입구에서 섬유가 임의 배향상태로 유입될 경우에는 반대로 팽창비가 증가함을 보였다. 관 입구에서의 다른 배향상태에 의해 발생하는 팽창비의 서로 다른 경향은 외부 표면부분과 내부중심부분의 신장점도의 차이로 설명할 수 있었다.
The extrudate swell of semiconcentrated fiber suspensions was investigated numerically by using a constitutive equation based on the continuum theory, which takes the interaction effect between flow and fiber orientation into account. And the orientation equation expressed in terms of the orientation tensor was solved simultaneously to obtain the fiber orientation distribution, in which the interaction effect among fibers was taken into account by adding a phenomenological diffusion term. In the simulations of the axisymmetric extrudate swell of fiber suspensions, the die swell ratio decreased as the suspension intensity increased when the fibers at the die inlet were aligned. But in the case of random orientation states of fibers at the die inlet, roughly thought as the case of short dies, the swell ratio increased, however. Different trends in the swell ratio caused by the different fiber orientation states at the die inlet could be explained in terms of the elongational viscosity difference between the outer surface part and the inner core part.
Keywords:Extrudate swell;Fiber suspensions;Fiber orientation distribution;Flow/fiber interaction;Fiber/fiber interaction
- Jeffery GB, Proc. Roy. Soc. A, 102, 161 (1923)
- Goldsmith H, Mason SG, "Rheology: Theory and Applications," ed. by F.R. Eirich, Vol. 4, Academic Press, Chapter 2 (1967)
- Givler RC, Crochet MJ, Pipes RB, J. Compos. Mater., 17, 330 (1983)
- Folgar FP, Tucker CL, J. Reinf. Plast. Compos., 3, 98 (1984)
- Batchelor GK, J. Fluid Mech., 41, 545 (1970)
- Dinh SM, Armstrong RC, J. Rheol., 28, 207 (1984)
- Papanastasiou AC, Alexandrou AN, J. Non-Newton. Fluid Mech., 25, 313 (1987)
- Lipscomb GG, Denn MM, Hur DU, Boger DV, J. Non-Newton. Fluid Mech., 26, 297 (1988)
- Advani SG, Tucker CL, J. Rheol., 31, 751 (1987)
- Nickell RE, Tanner RI, Caswell B, J. Fluid Mech., 65, 189 (1974)
- Bush MB, Phan-Thien N, J. Non-Newton. Fluid Mech., 18, 211 (1985)
- Karagiannis A, Hrymak AN, Vlachopoulos J, AIChE J., 34, 2088 (1988)
- Bird RB, Curtiss CF, Armstrong RC, Hassager O, "Dynamics of Polymeric Liquids," Vol. 2, Kinetic Theory, Wiley, Chapter 14 (1987)
- Karagiannis A, Hrymak AN, Vlachopoulos J, Rheol. Acta, 28, 121 (1989)
- Shiojima T, Shimazaki Y, J. Non-Newton. Fluid Mech., 34, 269 (1990)
- Lee SJ, Lee SJ, Korean J. Rheol., 2(2), 35 (1990)
- Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 74, 560 (1978)
- Hinch EJ, Leal LG, J. Fluid Mech., 52, 683 (1972)
- Batchelor J, Berry JP, Horsfal F, Polymer, 14, 297 (1973)
- Brooks AN, Hughes TJR, Comp. Meth. Appl. Mech. Eng., 32, 199 (1982)
- Yoon JS, M.S. Thesis, Seoul National University (1992)