화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.15, 4322-4328, 2011
Surfactant Two-Dimensional Self-Assembly under Confinement
Confinement-induced structural rearrangements in supported self-assembled surfactant layers in aqueous salt solutions are investigated using classical density functional theory. The systematic study of the influence of the nature of electrolyte revealed that 2:1 electrolyte stabilizes the hemicylindrical configuration of ionic surfactant layers, while a confinement-induced transition to a tilted monolayer configuration was found in symmetric 1:1 and 2:2 electrolytes. On the basis of this study, we formulate a general model for the energetics of structural rearrangements in supported surfactant layers. This model provides a basis for directed self-assembly of surfactant templates with desired structure and stability for scalable synthesis of nanocomposite functional materials, templated crystal growth, and biomolecule adsorption.