- Previous Article
- Next Article
- Table of Contents
Journal of Non-Newtonian Fluid Mechanics, Vol.166, No.12-13, 745-753, 2011
The Stokes boundary layer for a power-law fluid
We develop semi-analytical, self-similar solutions for the oscillatory boundary layer ('Stokes layer') in a semi-infinite power-law fluid bounded by an oscillating wall (the so-called Stokes problem). These solutions differ significantly from the classical solution for a Newtonian fluid, both in the non-sinusoidal form of the velocity oscillations and in the manner at which their amplitude decays with distance from the wall. In particular, for shear-thickening fluids the velocity reaches zero at a finite distance from the wall, and for shear-thinning fluids it decays algebraically with distance, in contrast to the exponential decay for a Newtonian fluid. We demonstrate numerically that these semi-analytical, self-similar solutions provide a good approximation to the flow driven by a sinusoidally oscillating wall. (c) 2011 Elsevier B.V. All rights reserved.