Journal of Non-Newtonian Fluid Mechanics, Vol.166, No.14-15, 792-798, 2011
Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel
Electroosmotic flow of power-law fluids in the presence of pressure gradient through a slit is analyzed. After numerically solving the Poisson-Boltzmann equation, the momentum equation with electroosmotic body force is solved through an iterative numerical procedure for both favorable and adverse pressure gradients. The results reveal that, in case of pressure assisted flow, shear-thinning fluids reach higher velocity magnitudes compared with shear-thickening fluids, whereas the opposite is true when an adverse pressure gradient is applied. The Poiseuille number is found to be an increasing function of the dimensionless Debye-Huckel parameter, the wall zeta potential, and the flow behavior index. Comparison between the exact and the results based on the Debye-Huckel linearization reveals that the simplified solution leads to large errors in evaluating the velocity profile for zeta potentials higher than 25 mV, except for shear-thickening fluids in the presence of favorable pressure gradient. (C) 2011 Elsevier B.V. All rights reserved.