Journal of Physical Chemistry A, Vol.115, No.21, 5443-5448, 2011
DFT Study on the Cycloreversion of Thietane Radical Cations
The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4 + 2] cycloadducts are obtained. Thus, the CR of radical cations 1a, b(center dot+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(center dot+) (ii). Calculations support that 1a(center dot+) follows reaction pathway (leading to the formal [4 + 2] cycloadducts 5a). By contrast, 1b(center dot+) follows pathway i, leading to trans-stilbene radical cation (2b(center dot+)) and thiobenzophenone.