Journal of Physical Chemistry A, Vol.115, No.25, 6838-6842, 2011
Scattering of Xe from Graphite
Recently a series of experimental measurements for the scattering of Xe atoms from graphite has been reported for both energy-resolved spectra and angular distributions. This system is of fundamental interest because the projectile Xe atoms are considerably more massive than the carbon atoms making up the graphite surface. These measurements were initially analyzed using the hard cubes model and molecular dynamics simulations, and both treatments indicated that the scattering process was a single collision in which the incoming Xe atom interacted strongly with a large number of carbon atoms in the outermost graphite layer. In this work we analyze the data using a single scattering theory that has been shown to explain a number of other experiments on molecular beam scattering from surfaces. These calculations confirm that the scattering process is a single collision with an effective surface mass that is substantially larger than that of the basic graphite ring.