화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.115, No.42, 11479-11485, 2011
Gas Phase Synthesis of Au Clusters Deposited on Titanium Oxide Clusters and Their Reactivity with CO Molecules
Titanium oxide clusters were formed in the gas phase by the laser ablation of a Ti rod in the presence of oxygen in a He gas. Not only stoichiometric but also nonstoichiometric titanium oxide clusters, Ti(n)O(2n+x)(+) (n = 1-22 and x = 1-3), were formed. The content of oxygen atoms depends strongly on a partial pressure of oxygen. Gold clusters, Au(m) (m = 1-4), were generated by the laser ablation, which were then deposited on Ti(n)O(2n+x) clusters. The formation of Au(m)Ti(n)O(2n+x)(+) follows electron transfer from Au(m) to Ti(n)O(2n+x)(+.) The reactivity of Au(m)Ti(n)O(2n+x)(+) cluster ions with CO was examined for different m, n, and x by the mass spectrometry. It was found that Au(m) on Ti(n)O(2n-1)(+) are less reactive than those on the other Ti(n)O(2n+x)(+) (x = 0 and 1). In addition, the reactivity is highest when Au(m) (m = 1 and 3) is on the stoichiometric titanium oxide (x = 0), whereas the reactivity is also high when Au(2) is on the oxygen-rich titanium oxide (x = 1). The reactivity was found to relate to geometrical structures of Au(m)Ti(n)O(2n+x)(+), which were studied by density functional calculations.