Journal of Physical Chemistry A, Vol.115, No.44, 12307-12314, 2011
Growth and Structural Properties of Mg-N (N=10-56) Clusters: Density Functional Theory Study
Using the minima hopping global geometry optimization method on density functional potential energy surface, we have studied the structural and electronic properties of magnesium clusters for a size range of Mg-N where N = 10-56. Our exhaustive search reveals that most of our global minima are nonsymmetric in the size range above N = 20. We elucidate the evolutionary trend of the entire series and present more details about the peculiar growth of the clusters. For N> 20, it is possible to divide the cluster into two regions: the core region and the surface region. It turns out that the growth follows a peculiar cyclic pattern where the core and surface grow alternatively. The surface energy, as a function of number of atoms shows a clear signature as the number of atoms in the core increases by one. We have also carried out stability analysis and the stable sizes(magic numbers) agree very well with the experimental magic numbers reported by Diederich [J. Chem. Phys. 2011, 134, 124302]. We point out the similarities and differences between our results and sodium clusters.