Journal of Physical Chemistry A, Vol.116, No.26, 7098-7106, 2012
Unraveling the Reactions that Unravel Cellulose
For over 90 years, researchers have postulated mechanisms for the cleavage of cellulose's glycosidic bonds and resulting formation of levoglucosan without reaching consensus. These reactions are key primary reactions in thermal processes for the production of carbon-neutral, renewable transportation fuels. Previous literature reports have proposed a variety of mainly heterolytic and homolytic mechanisms, but there has been insufficient evidence to settle the debate. Using density functional theory (DFT) methods and implicit solvent, we compared the likelihood of forming either radical or ionic intermediates. We discovered a concerted reaction mechanism that is more favorable than previously proposed mechanisms and is in better alignment with experimental findings. This new understanding of the mechanism of cellulose thermal decomposition opens the door to accurate process modeling and educated catalyst design, which are vital steps toward producing more cost-efficient renewable energy.