화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.19, 5693-5706, 2011
Organization and Dynamics of Membrane Probes and Proteins Utilizing the Red Edge Excitation Shift
Dynamics of confined water has interesting implications in the organization and function of molecular assemblies such as membranes. A direct consequence of this type of organization is the restriction imposed on the mobility of the constituent structural units. Interestingly, this restriction (confinement) of mobility couples the motion of solvent (water) molecules with the slow moving molecules in the assembly. It is in this context that the red edge excitation shift (REES) represents a sensitive approach to monitor the environment and dynamics around a fluorophore in such organized assemblies. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed REES. REES relies on slow solvent reorientation in the excited state of a fluorophore that can be used to monitor the environment and dynamics around a fluorophore in a host assembly. In this article, we focus on the application of REES to monitor organization and dynamics of membrane probes and proteins.