화학공학소재연구정보센터
Korean Journal of Rheology, Vol.6, No.2, 147-156, December, 1994
폴리프로필렌, 이산화티타늄 첨가 폴리프로필렌의 이성분 복합섬유의 물리적 성질
Physical Properties of Sheath-Core Fibers of Polypropylene and Titanium Dioxide Filled Polypropylene
초록
폴리프로필렌(Polypropylene), 이산화티타늄 첨가 폴리프로필렌(TiO2-filled Polypropylene)을 심초형 복합 방사(sheath-core conjugate spinning)하여 첨가제를 섬유의 중심(core) 부분, 또 표면(sheath) 부분에 차별분포시켰다. TiO2의 함량이 증가함에 따라 점도(η)와 저장탄성계수(G')는 증가하였다. 전자현미경으로 파단면의 모폴로지를 관찰한 결과 TiO2와 폴리프로필렌의 계면의 접착력이 낮음을 알았다. 광각 X-선 산란방법으로 구한 결정화도와 결정배향은 TiO2의 함량이 증가함에 따라 감소하는 경향을 보였다. TiO2의 함량 증가에 따라 강력, 절단신도, 그리고 탄성계수는 감소하였다. 복합방사한 섬유의 TiO2 함량이 2% 미만일 때는 homo PP보다 강력이 좋아졌다. 복합섬유의 탄성계수는 중심부에 homo PP가 분포한 경우가 더 켰고, 강력과 절단 신도는 중심부에 filled PP가 분포한 경우가 더 컸다.
Sheath-core fibers were spun with homo polypropylene(PP) in the sheath channel and the Titanium dioxide (TiO2)-filled polymers in the core channel, and vice-versa. As the content of TiO2 increases, the shear viscosity and the storage modulus increases. The fracture surface morphologies of TiO2-filled single cross-sectional fibers were investigated with SEM photographs showing that TiO2 particles and PP have poor adhesion in their interfaces. WAXS analysis shows that the crystallinity and orientation factor decrease with the increase of contents of TiO2. As the content of TiO2 increases, tenacity, elongation at break, and Young's modulus decrease. When the content of TiO2 is below 2 wt.%, the tenacity of the coextrusion fiber was greater than that of homo PP. Young's moduli of the coextrusion fibers with fillers in the sheath were greater than that of the coextrusion fibers with fillers in the core. Tenacity and elongation at break of the coextrusion fibers in the core were greater than the fibers with fillers in the sheath.
  1. Han CD, "Rheology in Polymer Processing," Chap. 10, Academic Press, New York (1976)
  2. Paul DR, Newman S, "Polymer Blend II," Chap. 15, Academic Press, New York (1978)
  3. Jeffries R, "Bicomponent Fiber," Merrow Publishing Co., Mandresten (1971)
  4. Elshieku A, Bogdan JF, Gupta RK, Text. Res. J., 41, 281 (1971)
  5. Han CD, "Multiphase Flow in Polymer Processings," Chap. 7, Academic Press, New York (1981)
  6. White JL, Crowder JW, J. Appl. Polym. Sci. (1974)
  7. Minagawa N, White JL, J. Appl. Polym. Sci., 20, 501 (1976) 
  8. Tanaka H, White JL, Polym. Eng. Sci., 20, 949 (1980) 
  9. Lobe VM, White JL, Polym. Eng. Sci., 19, 617 (1979) 
  10. Suetsugu Y, White JL, J. Appl. Polym. Sci., 28, 1481 (1983) 
  11. Han CD, Kim YW, J. Appl. Polym. Sci., 18, 2989 (1974)
  12. Chacko VP, Farris RJ, Karasz FE, J. Appl. Polym. Sci., 28, 2701 (1983) 
  13. Han CD, VandenWeghe T, Shete P, Haw JR, Polym. Eng. Sci., 21, 196 (1981) 
  14. Brand RH, Text. Res. J., 41, 70 (1971)
  15. Han CD, J. Appl. Polym. Sci., 19, 1203 (1973) 
  16. Han CD, J. Appl. Polym. Sci., 17, 1289 (1973) 
  17. Han CD, J. Appl. Polym. Sci., 19, 1875 (1975) 
  18. Khan AA, Han CD, Trans. Soc. Rheol., 21, 101 (1977) 
  19. Bird RB, Armstrongs RC, Hassager O, "Dynamics of Polymeric Liquids I," Chap. 3, John Wiley and Sons (1987)