Journal of Physical Chemistry B, Vol.115, No.23, 7550-7560, 2011
Hierarchical Nanostructures Self-Assembled from Diblock Copolymer/Homopolymer Blends with Supramolecular Interactions
Self-assembly of AB diblock copolymer/C homopolymer blends with reversible supramolecular interactions was studied by real-space self-consistent field theory. The reversible bond is formed between the B free end of the AB diblock copolymers and one end of the C homopolymers, and thereby the supramolecular blends consist of the AB diblock copolymers, C homopolymers, and supramolecular ABC terpolymers. The constitutions of the blends are dependent on the bonding strength and blend ratio. The change of the bonding strength and blend ratio leads to a series of hierarchically ordered alternating nanostructures. In these alternating nanostructures, the C homopolymers exhibit a swollen effect on the C substructures, and the coordination number of C cylinders decreases as the bonding strength increases. To gain the information about the hierarchical nanostructures in details, one-dimensional density profiles were plotted. The results were finally compared with the existing experimental findings, and an agreement was shown. The obtained results provided an insight into the role of the supramolecular interactions on the hierarchical nanostructure formations.