화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.25, 8183-8198, 2011
Room-Temperature Ionic Liquids Discerned Via Nitroxyl Spin Probe Dynamics
The temperature dependence of the rotational correlation times, tau(c), of the nitroxide spin probes TEMPO, TEMPOL, TEMPAMINE, and Fremy's salt in the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, and 1-butyl-3-methylimidazolium tetrafluoroborate is scrutinized. The rotation correlation times vary between 54 and 1470 ps at 300 K. Within a temperature range of 280-380 K, the rotational tumbling is well described by the extended Debye-Stokes-Einstein law. The hydrodynamic radii are smaller than the geometrical radii though. This discrepancy can partly be accounted for by microviscosity effects and deviations from the spherical shape. This study is distinguished from similar studies by the fact that proton superhyperfine coupling constants could be resolved for all nitroxides in the ionic liquids by carefully optimizing the experimental protocol. As a consequence, many rotational correlation times reported here are smaller than those found previously. Furthermore, the temperature dependence of the nitrogen ESR coupling constants is reported and discussed in detail. A surprising effect of adventitious water is reported for TEMPAMINE.