화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.116, No.1, 496-502, 2012
First Structural Model of Full-Length Human Tissue-Plasminogen Activator: A SAXS Data-Based Modeling Study
Human tissue-plasminogen activator (t-PA) is a multidomain glycoprotein which holds high biomedical value due to its therapeutic role in clot-specific fibrinolysis. Although atomic-resolution structures of individual domains except Kringlel are available, no structural information is available on how these domains and glycosylation are oriented in space relative to each other in the full-length protein. SAXS intensity profile acquired from samples of t-PA was used to "steer" structures of individual domains and the homology model of the first kringle domain to generate a structural model of the protein part of t-PA. Differences in the shape profiles of SAXS data-based dummy atom and proteinogenic models aided in grafting glycosylated moieties on the coordinates of t-PA. According to previously reported mutagenesis-rendered altered functional profiles, normal-mode analysis of our model revealed that the fibrin binding F/E domains "communicate" with the active-site in the P domain via Kringle2, while Kringlel is positioned away from these long-distance interactions.