화학공학소재연구정보센터
Korean Journal of Rheology, Vol.7, No.2, 120-127, August, 1995
펙틴 다당류의 측쇄가 점탄성에 미치는 영향
The Branching Effects of Pectic Polysaccharides on Viscoelastic Properties
초록
중량비로 측쇄(side branches)의 함량이 각각 4.37%(시료 I)와 8.97%(시료 II)인 두 종류의 사과 펙틴을 이용하여 측쇄가 펙틴용액의 점탄성에 미치는 역할에 대하여 연구하였다. 시료 II가 시료 I보다 동일한 농도에서 더 높은 zero-shear viscosity(η0) 값을 보였으며, 또한 전체적으로 점도의 전단속도 의존성이 큰 경향을 보여 높은 전단속도에서는 오히려 시료 I의 전단점도가 시료 II보다 높은 값을 보였다. 시료 I과 시료 II의 η0는 농도에 대하여 각각 η0 ∝ C4.04, η0 ∝ C4.23의 관계를 보여 시료 II가 더 높은 농도의존성을 보였다. 한편, 용액의 탄성특성을 나타내는 저장탄성계수(G')와 zero-shear recoverable complianceue(Je0의 경우에는 시료 II가 시료 I보다 높은 값을 보였는데, 이는 측쇄가 탄성과 밀접한 관계가 있다는 것을 의미한다. 펙틴용액의 전단점도(shear viscosity; η)와 복소점도(complex viscosity : η0)를 비교했을 때 거의 비슷한 값을 보였으나, 예외적으로 고측쇄의 시료 II의 경우 고농도에서 서로 상이한 값을 보였다. 본 연구의 결과는 진한 용액하에서 측쇄가 분자간의 상호엉킴(intermolecular entanglements)에 상당한 기여를 하고 있음을 나타내었다.
Pectins with the varying branching degrees were prepared by two different metal precipitation techniques, i.e., copper precipitation of polygalacturonic pectins followed by either 1% acid alcohol treatment (lower branched due to acid action : 4.37%) or EDTA treatment (higher branched : 8.97%). Increasing side branches resulted in higher zero-shear viscosity (η0) and increasing shear rate dependence of viscosity in steady shear measurements at the same concentration. The more branched pectins showed η0 ∝ C4.04, and the less branched one η0 ∝ C4.23, indicating the more concentration dependence of higher branched pectins The small amplitude oscillatory measurements revealed that the storage modulus (G') representing the elastic properties was higher for pectin samples with higher branching degrees, and the zero-shear recoverable compliance (Je0), calculated fromη0Je 0 γ0.8 ∼0.6, showed the same trend. This indicates the positive contribution of side branches to the elastic properties of pectins. Comparison of steady shear viscosity (η) and dynamic complex viscosity (ηo) exhibited a good superposition except the highly branched pectin samples at high concentration. The results observed in this research strongly support the fact that side branches of pectins are involved in intermolecular entanglements in concentrated solutions.
  1. Cogswell FN, "Polymer Melt Rheology: A Guide for Industrial Practice," John Wiley & Sons, New York, pp. 81-83 (1981)
  2. Graessley WW, "Physical Properties of Polymers," by J.E. Mark, A. Eisenberg and W.W. Graessley, American Chemical Society, Washington D.C., pp. 141-150 (1984)
  3. Hwang J, Kokini JL, J. Tex. Stud., 22, 123 (1991)
  4. Berry GC, Fox TG, Adv. Polym. Sci., 5, 261 (1968)
  5. Graessley WW, Accoun. Chem. Res., 10, 332 (1977) 
  6. Larson RG, "Constitutive Equations for Polymer Melts and Solutions," Butterworths, Boston, pp. 104-106 (1988)
  7. Dea ICM, "Industrial Polysaccharides: Genetic Engineering, Structure/Property Relations and Applications," by M. Yalpani, Elsevier Applied Science Publishers, New York, pp. 207-216 (1987)
  8. Hwang J, Food Sci. Ind., 26, 20 (1993)
  9. John MA, Dey PM, Adv. Food Res., 30, 139 (1986)
  10. Ilker R, Szczesniak AS, J. Tex. Stud., 21, 1 (1990)
  11. May CD, Carbohydr. Polym., 12, 79 (1990) 
  12. Gregory DJH, "Interactions of Food Components," by G.G. Birch and M.G. Lindley, Elsevier, New York, pp. 211-240 (1986)
  13. O'Beirne D, "Encyclopedia of Food Science, Food Technology and Nutrition," by R. Macrae, R.K. Robinson and M.J. Sadler, Vol. 3, Academic Press, New York, 2612-2621 (1993)
  14. Dey PM, Brinson K, Adv. Carbohydr. Chem. Biochem., 42, 265 (1986)
  15. Talmadge KW, Keegstra K, Bauer WD, Albersheim P, Plant Physiol., 51, 158 (1973)
  16. Bacic A, Harris PJ, Stone BA, "The Biochemistry of Plants," by J. Preiss, Vol. 14, Academic Press, New York, pp. 309-314 (1988)
  17. Aspinall GO, "The Biochemistry of Plants," by J. Preiss, Vol. 3, Academic Press, New York, pp. 480-489 (1980)
  18. Hwang J, Pyun YR, Kokini JL, Food Hydrocolloids, 7, 39 (1993)
  19. Hwang J, Kokini JL, Carbohydr. Polym., 19, 41 (1992) 
  20. Roovers J, Polymer, 22, 1603 (1981) 
  21. Raju VR, Menezes EV, Marin G, Graessley WW, Macromolecules, 14, 1668 (1981) 
  22. Roovers J, Graessley WW, Macromolecules, 14, 766 (1981) 
  23. Hwang J, Roshdy TH, Kontominas M, Kokini JL, J. Food Sci., 57, 1180 (1992) 
  24. Jacovic MS, Pollock D, Porter RS, J. Appl. Polym. Sci., 23, 517 (1979) 
  25. Rao MA, Anantheswaran RC, Food Technol., 36, 16 (1982)
  26. DeGennes PG, J. Chem. Phys., 55, 572 (1971) 
  27. Graessley WW, Masuda T, Roovers JEL, Hadjichristidis N, Macromolecules, 9, 127 (1976) 
  28. Graessley WW, Roovers J, Macromolecules, 12, 959 (1979) 
  29. Krumel KL, Sarkar N, Food Technol., 29, 36 (1975)
  30. Nielsen LE, "Polymer Rheology," Marcel Dekker, New York, pp. 47-51 (1977)
  31. Barnes HA, Hutton JF, Walters K, "An Introduction to Rheology," Elsevier Applied SciencePublishers, New York, pp. 97-99 (1989)
  32. Han CD, "Rheology in Polymer Processing," Academic Press, Loncon, pp. 74-79 (1976)
  33. Ferry JD, "Viscoelastic Properties of Polymers," John Wiley & Sons, New York, pp. 232-233 (1980)
  34. Graessley WW, Adv. Polym. Sci., 16, 1 (1974)
  35. Roovers J, "Encyclopedia of Polymer Science and Engineering," A. Klingsberg, J. Muldoon and A. Salvatore, Vol. 2, John Wiley & Sons, New York, pp. 478-499
  36. Cox WP, Merz EH, J. Polym. Sci., 28, 619 (1958) 
  37. Morris ER, Ross-Murphy SB, Techniques in Carbohydrate Metabolism, B310, 1 (1981)