Journal of Physical Chemistry B, Vol.116, No.22, 6326-6335, 2012
Hydrophobic Moments, Shape, and Packing in Disordered Proteins
Disordered proteins play a significant role in many biological processes and provide an attractive target for biophysical studies under physiological conditions. Disordered proteins may be classified as (a) proteins with overall well-defined secondary structures, interspersed with regions of missing residues, or (b) natively unstructured proteins which lack definite secondary structure. The spatial profile of second order hydrophobic moment for disordered proteins depicts the distribution of hydrophobic residues from the interior to the surface of the protein and indicates the lack of a well-formed hydrophobic core unlike that of the globular proteins. This trend is independent of the size or position of the disordered region in the sequence. The hydrophobicity profile of the ordered regions of the disordered proteins differ considerably from that of globular proteins implying the role of disordered parts and the significance of hydrophobic interactions in the folding of proteins. The shape asymmetry of the two classes of disordered proteins is determined by calculating the asphercity and shape parameters, derived from the Cartesian components of radius of gyration tensor. Disordered proteins of group a are more spherical as compared to the natively unstructured proteins (group b), which are more prolate. Both groups of proteins exhibit similar types of side-chain backbone contacts, as that of the globular proteins. While disordered proteins contains few hydrophobic residues natively unstructured proteins are characterized by a residues of low mean hydrophobicity and high mean net charge.